
Lua 5.1 Reference Manual
Roberto Ierusalimschy,
Luiz Henrique de Figueiredo,
Waldemar Celes

March 26, 2007

1 - Introduction
Lua is an extension programming language designed to support general procedural programming with data
description facilities. It also offers good support for object-oriented programming, functional programming, and
data-driven programming. Lua is intended to be used as a powerful, light-weight scripting language for any
program that needs one. Lua is implemented as a library, written in clean C (that is, in the common subset of
ANSI C and C++).

Being an extension language, Lua has no notion of a “main” program: it only works embedded in a host client,
called the embedding program or simply the host. This host program can invoke functions to execute a piece of
Lua code, can write and read Lua variables, and can register C functions to be called by Lua code. Through the
use of C functions, Lua can be augmented to cope with a wide range of different domains, thus creating
customized programming languages sharing a syntactical framework. The Lua distribution includes a sample
host program called lua, which uses the Lua library to offer a complete, stand-alone Lua interpreter.

Lua is free software, and is provided as usual with no guarantees, as stated in its license. The implementation
described in this manual is available at Lua's official web site, www.lua.org.

Like any other reference manual, this document is dry in places. For a discussion of the decisions behind the
design of Lua, see the technical papers available at Lua's web site. For a detailed introduction to programming in
Lua, see Roberto's book, Programming in Lua (Second Edition).

2 - The Language
This section describes the lexis, the syntax, and the semantics of Lua. In other words, this section describes which
tokens are valid, how they can be combined, and what their combinations mean.

The language constructs will be explained using the usual extended BNF notation, in which {a} means 0 or more
a’s, and [a] means an optional a. Non-terminals are shown like non-terminal, keywords are shown like kword,
and other terminal symbols are shown like ‘=’. The complete syntax of Lua can be found at the end of this
manual.

2.1 - Lexical Conventions
Names (also called identifiers) in Lua can be any string of letters, digits, and underscores, not beginning with a
digit. This coincides with the definition of names in most languages. (The definition of letter depends on the
current locale: any character considered alphabetic by the current locale can be used in an identifier.) Identifiers
are used to name variables and table fields.

The following keywords are reserved and cannot be used as names:

 and break do else elseif
 end false for function if
 in local nil not or
 repeat return then true until while

Lua is a case-sensitive language: and is a reserved word, but And and AND are two different, valid names. As a
convention, names starting with an underscore followed by uppercase letters (such as _VERSION) are reserved
for internal global variables used by Lua.

The following strings denote other tokens:

- 1 -

 + - * / % ^ #
 == ~= <= >= < > =
 () { } []
 ; : ,

Literal strings can be delimited by matching single or double quotes, and can contain the following C-like escape
sequences: '\a' (bell), '\b' (backspace), '\f' (form feed), '\n' (newline), '\r' (carriage return), '\t' (horizontal
tab), '\v' (vertical tab), '\\' (backslash), '\"' (quotation mark [double quote]), and '\'' (apostrophe [single
quote]). Moreover, a backslash followed by a real newline results in a newline in the string. A character in a
string may also be specified by its numerical value using the escape sequence \ddd, where ddd is a sequence of
up to three decimal digits. (Note that if a numerical escape is to be followed by a digit, it must be expressed using
exactly three digits.) Strings in Lua may contain any 8-bit value, including embedded zeros, which can be
specified as '\0'.

To put a double (single) quote, a newline, a backslash, or an embedded zero inside a literal string enclosed by
double (single) quotes you must use an escape sequence. Any other character may be directly inserted into the
literal. (Some control characters may cause problems for the file system, but Lua has no problem with them.)

Literal strings can also be defined using a long format enclosed by long brackets. We define an opening long
bracket of level n as an opening square bracket followed by n equal signs followed by another opening square
bracket. So, an opening long bracket of level 0 is written as [[, an opening long bracket of level 1 is written as
[=[, and so on. A closing long bracket is defined similarly; for instance, a closing long bracket of level 4 is written
as]====]. A long string starts with an opening long bracket of any level and ends at the first closing long
bracket of the same level. Literals in this bracketed form may run for several lines, do not interpret any escape
sequences, and ignore long brackets of any other level. They may contain anything except a closing bracket of the
proper level.

For convenience, when the opening long bracket is immediately followed by a newline, the newline is not
included in the string. As an example, in a system using ASCII (in which 'a' is coded as 97, newline is coded as 10,
and '1' is coded as 49), the five literals below denote the same string:

 a = 'alo\n123"'
 a = "alo\n123\""
 a = '\97lo\10\04923"'
 a = [[alo
 123"]]
 a = [==[
 alo
 123"]==]

A numerical constant may be written with an optional decimal part and an optional decimal exponent. Lua also
accepts integer hexadecimal constants, by prefixing them with 0x. Examples of valid numerical constants are

 3 3.0 3.1416 314.16e-2 0.31416E1 0xff 0x56

A comment starts with a double hyphen (--) anywhere outside a string. If the text immediately after -- is not an
opening long bracket, the comment is a short comment, which runs until the end of the line. Otherwise, it is a long
comment, which runs until the corresponding closing long bracket. Long comments are frequently used to
disable code temporarily.

2.2 - Values and Types
Lua is a dynamically typed language. This means that variables do not have types; only values do. There are no
type definitions in the language. All values carry their own type.

All values in Lua are first-class values. This means that all values can be stored in variables, passed as arguments
to other functions, and returned as results.

There are eight basic types in Lua: nil, boolean, number, string, function, userdata, thread, and table. Nil is the type
of the value nil, whose main property is to be different from any other value; it usually represents the absence of
a useful value. Boolean is the type of the values false and true. Both nil and false make a condition false; any
other value makes it true. Number represents real (double-precision floating-point) numbers. (It is easy to build
Lua interpreters that use other internal representations for numbers, such as single-precision float or long

- 2 -

integers; see file luaconf.h.) String represents arrays of characters. Lua is 8-bit clean: strings may contain any
8-bit character, including embedded zeros ('\0') (see §2.1).

Lua can call (and manipulate) functions written in Lua and functions written in C (see §2.5.8).

The type userdata is provided to allow arbitrary C data to be stored in Lua variables. This type corresponds to a
block of raw memory and has no pre-defined operations in Lua, except assignment and identity test. However, by
using metatables, the programmer can define operations for userdata values (see §2.8). Userdata values cannot
be created or modified in Lua, only through the C API. This guarantees the integrity of data owned by the host
program.

The type thread represents independent threads of execution and it is used to implement coroutines (see §2.11).
Do not confuse Lua threads with operating-system threads. Lua supports coroutines on all systems, even those
that do not support threads.

The type table implements associative arrays, that is, arrays that can be indexed not only with numbers, but with
any value (except nil). Tables can be heterogeneous; that is, they can contain values of all types (except nil).
Tables are the sole data structuring mechanism in Lua; they may be used to represent ordinary arrays, symbol
tables, sets, records, graphs, trees, etc. To represent records, Lua uses the field name as an index. The language
supports this representation by providing a.name as syntactic sugar for a["name"]. There are several
convenient ways to create tables in Lua (see §2.5.7).

Like indices, the value of a table field can be of any type (except nil). In particular, because functions are first-
class values, table fields may contain functions. Thus tables may also carry methods (see §2.5.9).

Tables, functions, threads, and (full) userdata values are objects: variables do not actually contain these values,
only references to them. Assignment, parameter passing, and function returns always manipulate references to
such values; these operations do not imply any kind of copy.

The library function type returns a string describing the type of a given value.

2.2.1 - Coercion

Lua provides automatic conversion between string and number values at run time. Any arithmetic operation
applied to a string tries to convert this string to a number, following the usual conversion rules. Conversely,
whenever a number is used where a string is expected, the number is converted to a string, in a reasonable
format. For complete control over how numbers are converted to strings, use the format function from the
string library (see string.format).

2.3 - Variables
Variables are places that store values. There are three kinds of variables in Lua: global variables, local variables,
and table fields.

A single name can denote a global variable or a local variable (or a function's formal parameter, which is a
particular kind of local variable):

 var ::= Name

Name denotes identifiers, as defined in §2.1.

Any variable is assumed to be global unless explicitly declared as a local (see §2.4.7). Local variables are lexically
scoped: local variables can be freely accessed by functions defined inside their scope (see §2.6).

Before the first assignment to a variable, its value is nil.

Square brackets are used to index a table:

 var ::= prefixexp `[´ exp `]´

The meaning of accesses to global variables and table fields can be changed via metatables. An access to an
indexed variable t[i] is equivalent to a call gettable_event(t,i). (See §2.8 for a complete description of
the gettable_event function. This function is not defined or callable in Lua. We use it here only for
explanatory purposes.)

The syntax var.Name is just syntactic sugar for var["Name"]:

- 3 -

http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.6
http://www.lua.org/manual/5.1/manual.html#2.6
http://www.lua.org/manual/5.1/manual.html#2.6
http://www.lua.org/manual/5.1/manual.html#2.4.7
http://www.lua.org/manual/5.1/manual.html#2.4.7
http://www.lua.org/manual/5.1/manual.html#2.4.7
http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#pdf-string.format
http://www.lua.org/manual/5.1/manual.html#pdf-string.format
http://www.lua.org/manual/5.1/manual.html#pdf-string.format
http://www.lua.org/manual/5.1/manual.html#pdf-type
http://www.lua.org/manual/5.1/manual.html#pdf-type
http://www.lua.org/manual/5.1/manual.html#pdf-type
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.7
http://www.lua.org/manual/5.1/manual.html#2.5.7
http://www.lua.org/manual/5.1/manual.html#2.5.7
http://www.lua.org/manual/5.1/manual.html#2.11
http://www.lua.org/manual/5.1/manual.html#2.11
http://www.lua.org/manual/5.1/manual.html#2.11
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#2.1

 var ::= prefixexp `.´ Name

All global variables live as fields in ordinary Lua tables, called environment tables or simply environments (see
§2.9). Each function has its own reference to an environment, so that all global variables in this function will
refer to this environment table. When a function is created, it inherits the environment from the function that
created it. To get the environment table of a Lua function, you call getfenv. To replace it, you call setfenv.
(You can only manipulate the environment of C functions through the debug library; (see §5.9).)

An access to a global variable x is equivalent to _env.x, which in turn is equivalent to

 gettable_event(_env, "x")

where _env is the environment of the running function. (See §2.8 for a complete description of the
gettable_event function. This function is not defined or callable in Lua. Similarly, the _env variable is not
defined in Lua. We use them here only for explanatory purposes.)

2.4 - Statements
Lua supports an almost conventional set of statements, similar to those in Pascal or C. This set includes
assignment, control structures, function calls, and variable declarations.

2.4.1 - Chunks

The unit of execution of Lua is called a chunk. A chunk is simply a sequence of statements, which are executed
sequentially. Each statement can be optionally followed by a semicolon:

 chunk ::= {stat [`;´]}

There are no empty statements and thus ';;' is not legal.

Lua handles a chunk as the body of an anonymous function with a variable number of arguments (see §2.5.9). As
such, chunks can define local variables, receive arguments, and return values.

A chunk may be stored in a file or in a string inside the host program. When a chunk is executed, first it is pre-
compiled into instructions for a virtual machine, and then the compiled code is executed by an interpreter for the
virtual machine.

Chunks may also be pre-compiled into binary form; see program luac for details. Programs in source and
compiled forms are interchangeable; Lua automatically detects the file type and acts accordingly.

2.4.2 - Blocks

A block is a list of statements; syntactically, a block is the same as a chunk:

 block ::= chunk

A block may be explicitly delimited to produce a single statement:

 stat ::= do block end

Explicit blocks are useful to control the scope of variable declarations. Explicit blocks are also sometimes used to
add a return or break statement in the middle of another block (see §2.4.4).

2.4.3 - Assignment

Lua allows multiple assignment. Therefore, the syntax for assignment defines a list of variables on the left side
and a list of expressions on the right side. The elements in both lists are separated by commas:

 stat ::= varlist1 `=´ explist1
 varlist1 ::= var {`,´ var}
 explist1 ::= exp {`,´ exp}

Expressions are discussed in §2.5.

Before the assignment, the list of values is adjusted to the length of the list of variables. If there are more values
than needed, the excess values are thrown away. If there are fewer values than needed, the list is extended with

- 4 -

http://www.lua.org/manual/5.1/manual.html#2.5
http://www.lua.org/manual/5.1/manual.html#2.5
http://www.lua.org/manual/5.1/manual.html#2.5
http://www.lua.org/manual/5.1/manual.html#2.4.4
http://www.lua.org/manual/5.1/manual.html#2.4.4
http://www.lua.org/manual/5.1/manual.html#2.4.4
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#5.9
http://www.lua.org/manual/5.1/manual.html#5.9
http://www.lua.org/manual/5.1/manual.html#5.9
http://www.lua.org/manual/5.1/manual.html#pdf-setfenv
http://www.lua.org/manual/5.1/manual.html#pdf-setfenv
http://www.lua.org/manual/5.1/manual.html#pdf-setfenv
http://www.lua.org/manual/5.1/manual.html#pdf-getfenv
http://www.lua.org/manual/5.1/manual.html#pdf-getfenv
http://www.lua.org/manual/5.1/manual.html#pdf-getfenv
http://www.lua.org/manual/5.1/manual.html#2.9
http://www.lua.org/manual/5.1/manual.html#2.9
http://www.lua.org/manual/5.1/manual.html#2.9

as many nil's as needed. If the list of expressions ends with a function call, then all values returned by this call
enter in the list of values, before the adjustment (except when the call is enclosed in parentheses; see §2.5).

The assignment statement first evaluates all its expressions and only then are the assignments performed. Thus
the code

 i = 3
 i, a[i] = i+1, 20

sets a[3] to 20, without affecting a[4] because the i in a[i] is evaluated (to 3) before it is assigned 4.
Similarly, the line

 x, y = y, x

exchanges the values of x and y.

The meaning of assignments to global variables and table fields can be changed via metatables. An assignment to
an indexed variable t[i] = val is equivalent to settable_event(t,i,val). (See §2.8 for a complete
description of the settable_event function. This function is not defined or callable in Lua. We use it here only
for explanatory purposes.)

An assignment to a global variable x = val is equivalent to the assignment _env.x = val, which in turn is
equivalent to

 settable_event(_env, "x", val)

where _env is the environment of the running function. (The _env variable is not defined in Lua. We use it here
only for explanatory purposes.)

2.4.4 - Control Structures

The control structures if, while, and repeat have the usual meaning and familiar syntax:

 stat ::= while exp do block end
 stat ::= repeat block until exp
 stat ::= if exp then block {elseif exp then block} [else block] end

Lua also has a for statement, in two flavors (see §2.4.5).

The condition expression of a control structure may return any value. Both false and nil are considered false. All
values different from nil and false are considered true (in particular, the number 0 and the empty string are also
true).

In the repeat–until loop, the inner block does not end at the until keyword, but only after the condition. So, the
condition can refer to local variables declared inside the loop block.

The return statement is used to return values from a function or a chunk (which is just a function). Functions
and chunks may return more than one value, so the syntax for the return statement is

 stat ::= return [explist1]

The break statement is used to terminate the execution of a while, repeat, or for loop, skipping to the next
statement after the loop:

 stat ::= break

A break ends the innermost enclosing loop.

The return and break statements can only be written as the last statement of a block. If it is really necessary to
return or break in the middle of a block, then an explicit inner block can be used, as in the idioms do return
end and do break end, because now return and break are the last statements in their (inner) blocks.

2.4.5 - For Statement

The for statement has two forms: one numeric and one generic.

The numeric for loop repeats a block of code while a control variable runs through an arithmetic progression. It
has the following syntax:

- 5 -

http://www.lua.org/manual/5.1/manual.html#2.4.5
http://www.lua.org/manual/5.1/manual.html#2.4.5
http://www.lua.org/manual/5.1/manual.html#2.4.5
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.5
http://www.lua.org/manual/5.1/manual.html#2.5
http://www.lua.org/manual/5.1/manual.html#2.5

 stat ::= for Name `=´ exp `,´ exp [`,´ exp] do block end

The block is repeated for name starting at the value of the first exp, until it passes the second exp by steps of the
third exp. More precisely, a for statement like

 for v = e1, e2, e3 do block end

is equivalent to the code:

 do
 local var, limit, step = tonumber(e1), tonumber(e2), tonumber(e3)
 if not (var and limit and step) then error() end
 while (step > 0 and var <= limit) or (step <= 0 and var >= limit) do
 local v = var
 block
 var = var + step
 end
 end

Note the following:

• All three control expressions are evaluated only once, before the loop starts. They must all result in
numbers.

• var, limit, and step are invisible variables. The names are here for explanatory purposes only.
• If the third expression (the step) is absent, then a step of 1 is used.
• You can use break to exit a for loop.
• The loop variable v is local to the loop; you cannot use its value after the for ends or is broken. If you

need this value, assign it to another variable before breaking or exiting the loop.

The generic for statement works over functions, called iterators. On each iteration, the iterator function is called
to produce a new value, stopping when this new value is nil. The generic for loop has the following syntax:

 stat ::= for namelist in explist1 do block end
 namelist ::= Name {`,´ Name}

A for statement like

 for var_1, ···, var_n in explist do block end

is equivalent to the code:

 do
 local f, s, var = explist
 while true do
 local var_1, ···, var_n = f(s, var)
 var = var_1
 if var == nil then break end
 block
 end
 end

Note the following:

• explist is evaluated only once. Its results are an iterator function, a state, and an initial value for the first
iterator variable.

• f, s, and var are invisible variables. The names are here for explanatory purposes only.
• You can use break to exit a for loop.
• The loop variables var_i are local to the loop; you cannot use their values after the for ends. If you need

these values, then assign them to other variables before breaking or exiting the loop.

2.4.6 - Function Calls as Statements

To allow possible side-effects, function calls can be executed as statements:

 stat ::= functioncall

In this case, all returned values are thrown away. Function calls are explained in §2.5.8.

- 6 -

http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5.8

2.4.7 - Local Declarations

Local variables may be declared anywhere inside a block. The declaration may include an initial assignment:

 stat ::= local namelist [`=´ explist1]

If present, an initial assignment has the same semantics of a multiple assignment (see §2.4.3). Otherwise, all
variables are initialized with nil.

A chunk is also a block (see §2.4.1), and so local variables can be declared in a chunk outside any explicit block.
The scope of such local variables extends until the end of the chunk.

The visibility rules for local variables are explained in §2.6.

2.5 - Expressions
The basic expressions in Lua are the following:

 exp ::= prefixexp
 exp ::= nil | false | true
 exp ::= Number
 exp ::= String
 exp ::= function
 exp ::= tableconstructor
 exp ::= `...´
 exp ::= exp binop exp
 exp ::= unop exp
 prefixexp ::= var | functioncall | `(´ exp `)´

Numbers and literal strings are explained in §2.1; variables are explained in §2.3; function definitions are
explained in §2.5.9; function calls are explained in §2.5.8; table constructors are explained in §2.5.7. Vararg
expressions, denoted by three dots ('...'), can only be used when directly inside a vararg function; they are
explained in §2.5.9.

Binary operators comprise arithmetic operators (see §2.5.1), relational operators (see §2.5.2), logical operators
(see §2.5.3), and the concatenation operator (see §2.5.4). Unary operators comprise the unary minus (see
§2.5.1), the unary not (see §2.5.3), and the unary length operator (see §2.5.5).

Both function calls and vararg expressions may result in multiple values. If the expression is used as a statement
(see §2.4.6) (only possible for function calls), then its return list is adjusted to zero elements, thus discarding all
returned values. If the expression is used as the last (or the only) element of a list of expressions, then no
adjustment is made (unless the call is enclosed in parentheses). In all other contexts, Lua adjusts the result list to
one element, discarding all values except the first one.

Here are some examples:

 f() -- adjusted to 0 results
 g(f(), x) -- f() is adjusted to 1 result
 g(x, f()) -- g gets x plus all results from f()
 a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil)
 a,b = ... -- a gets the first vararg parameter, b gets
 -- the second (both a and b may get nil if there
 -- is no corresponding vararg parameter)

 a,b,c = x, f() -- f() is adjusted to 2 results
 a,b,c = f() -- f() is adjusted to 3 results
 return f() -- returns all results from f()
 return ... -- returns all received vararg parameters
 return x,y,f() -- returns x, y, and all results from f()
 {f()} -- creates a list with all results from f()
 {...} -- creates a list with all vararg parameters
 {f(), nil} -- f() is adjusted to 1 result

An expression enclosed in parentheses always results in only one value. Thus, (f(x,y,z)) is always a single
value, even if f returns several values. (The value of (f(x,y,z)) is the first value returned by f or nil if f does
not return any values.)

- 7 -

http://www.lua.org/manual/5.1/manual.html#2.4.6
http://www.lua.org/manual/5.1/manual.html#2.4.6
http://www.lua.org/manual/5.1/manual.html#2.4.6
http://www.lua.org/manual/5.1/manual.html#2.5.5
http://www.lua.org/manual/5.1/manual.html#2.5.5
http://www.lua.org/manual/5.1/manual.html#2.5.5
http://www.lua.org/manual/5.1/manual.html#2.5.3
http://www.lua.org/manual/5.1/manual.html#2.5.3
http://www.lua.org/manual/5.1/manual.html#2.5.3
http://www.lua.org/manual/5.1/manual.html#2.5.1
http://www.lua.org/manual/5.1/manual.html#2.5.1
http://www.lua.org/manual/5.1/manual.html#2.5.1
http://www.lua.org/manual/5.1/manual.html#2.5.4
http://www.lua.org/manual/5.1/manual.html#2.5.4
http://www.lua.org/manual/5.1/manual.html#2.5.4
http://www.lua.org/manual/5.1/manual.html#2.5.3
http://www.lua.org/manual/5.1/manual.html#2.5.3
http://www.lua.org/manual/5.1/manual.html#2.5.3
http://www.lua.org/manual/5.1/manual.html#2.5.2
http://www.lua.org/manual/5.1/manual.html#2.5.2
http://www.lua.org/manual/5.1/manual.html#2.5.2
http://www.lua.org/manual/5.1/manual.html#2.5.1
http://www.lua.org/manual/5.1/manual.html#2.5.1
http://www.lua.org/manual/5.1/manual.html#2.5.1
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.7
http://www.lua.org/manual/5.1/manual.html#2.5.7
http://www.lua.org/manual/5.1/manual.html#2.5.7
http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.5.9
http://www.lua.org/manual/5.1/manual.html#2.3
http://www.lua.org/manual/5.1/manual.html#2.3
http://www.lua.org/manual/5.1/manual.html#2.3
http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#2.1
http://www.lua.org/manual/5.1/manual.html#2.6
http://www.lua.org/manual/5.1/manual.html#2.6
http://www.lua.org/manual/5.1/manual.html#2.6
http://www.lua.org/manual/5.1/manual.html#2.4.1
http://www.lua.org/manual/5.1/manual.html#2.4.1
http://www.lua.org/manual/5.1/manual.html#2.4.1
http://www.lua.org/manual/5.1/manual.html#2.4.3
http://www.lua.org/manual/5.1/manual.html#2.4.3
http://www.lua.org/manual/5.1/manual.html#2.4.3

2.5.1 - Arithmetic Operators

Lua supports the usual arithmetic operators: the binary + (addition), - (subtraction), * (multiplication), /
(division), % (modulo), and ^ (exponentiation); and unary - (negation). If the operands are numbers, or strings
that can be converted to numbers (see §2.2.1), then all operations have the usual meaning. Exponentiation works
for any exponent. For instance, x^(-0.5) computes the inverse of the square root of x. Modulo is defined as

 a % b == a - math.floor(a/b)*b

That is, it is the remainder of a division that rounds the quotient towards minus infinity.

2.5.2 - Relational Operators

The relational operators in Lua are

 == ~= < > <= >=

These operators always result in false or true.

Equality (==) first compares the type of its operands. If the types are different, then the result is false. Otherwise,
the values of the operands are compared. Numbers and strings are compared in the usual way. Objects (tables,
userdata, threads, and functions) are compared by reference: two objects are considered equal only if they are
the same object. Every time you create a new object (a table, userdata, thread, or function), this new object is
different from any previously existing object.

You can change the way that Lua compares tables and userdata by using the “eq” metamethod (see §2.8).

The conversion rules of §2.2.1 do not apply to equality comparisons. Thus, "0"==0 evaluates to false, and t[0]
and t["0"] denote different entries in a table.

The operator ~= is exactly the negation of equality (==).

The order operators work as follows. If both arguments are numbers, then they are compared as such.
Otherwise, if both arguments are strings, then their values are compared according to the current locale.
Otherwise, Lua tries to call the “lt” or the “le” metamethod (see §2.8).

2.5.3 - Logical Operators

The logical operators in Lua are and, or, and not. Like the control structures (see §2.4.4), all logical operators
consider both false and nil as false and anything else as true.

The negation operator not always returns false or true. The conjunction operator and returns its first argument
if this value is false or nil; otherwise, and returns its second argument. The disjunction operator or returns its
first argument if this value is different from nil and false; otherwise, or returns its second argument. Both and
and or use short-cut evaluation; that is, the second operand is evaluated only if necessary. Here are some
examples:

 10 or 20 --> 10
 10 or error() --> 10
 nil or "a" --> "a"
 nil and 10 --> nil
 false and error() --> false
 false and nil --> false
 false or nil --> nil
 10 and 20 --> 20

(In this manual, --> indicates the result of the preceding expression.)

2.5.4 - Concatenation

The string concatenation operator in Lua is denoted by two dots ('..'). If both operands are strings or numbers,
then they are converted to strings according to the rules mentioned in §2.2.1. Otherwise, the “concat”
metamethod is called (see §2.8).

2.5.5 - The Length Operator

The length operator is denoted by the unary operator #. The length of a string is its number of bytes (that is, the

- 8 -

http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.4.4
http://www.lua.org/manual/5.1/manual.html#2.4.4
http://www.lua.org/manual/5.1/manual.html#2.4.4
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.2.1
http://www.lua.org/manual/5.1/manual.html#2.2.1

usual meaning of string length when each character is one byte).

The length of a table t is defined to be any integer index n such that t[n] is not nil and t[n+1] is nil;
moreover, if t[1] is nil, n may be zero. For a regular array, with non-nil values from 1 to a given n, its length is
exactly that n, the index of its last value. If the array has “holes” (that is, nil values between other non-nil values),
then #t may be any of the indices that directly precedes a nil value (that is, it may consider any such nil value as
the end of the array).

2.5.6 - Precedence

Operator precedence in Lua follows the table below, from lower to higher priority:

 or
 and
 < > <= >= ~= ==
 ..
 + -
 * / %
 not # - (unary)
 ^

As usual, you can use parentheses to change the precedences of an expression. The concatenation ('..') and
exponentiation ('^') operators are right associative. All other binary operators are left associative.

2.5.7 - Table Constructors

Table constructors are expressions that create tables. Every time a constructor is evaluated, a new table is
created. Constructors can be used to create empty tables, or to create a table and initialize some of its fields. The
general syntax for constructors is

 tableconstructor ::= `{´ [fieldlist] `}´
 fieldlist ::= field {fieldsep field} [fieldsep]
 field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp
 fieldsep ::= `,´ | `;´

Each field of the form [exp1] = exp2 adds to the new table an entry with key exp1 and value exp2. A field of
the form name = exp is equivalent to ["name"] = exp. Finally, fields of the form exp are equivalent to [i]
= exp, where i are consecutive numerical integers, starting with 1. Fields in the other formats do not affect this
counting. For example,

 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }

is equivalent to

 do
 local t = {}
 t[f(1)] = g
 t[1] = "x" -- 1st exp
 t[2] = "y" -- 2nd exp
 t.x = 1 -- t["x"] = 1
 t[3] = f(x) -- 3rd exp
 t[30] = 23
 t[4] = 45 -- 4th exp
 a = t
 end

If the last field in the list has the form exp and the expression is a function call or a vararg expression, then all
values returned by this expression enter the list consecutively (see §2.5.8). To avoid this, enclose the function
call (or the vararg expression) in parentheses (see §2.5).

The field list may have an optional trailing separator, as a convenience for machine-generated code.

2.5.8 - Function Calls

A function call in Lua has the following syntax:

- 9 -

http://www.lua.org/manual/5.1/manual.html#2.5
http://www.lua.org/manual/5.1/manual.html#2.5
http://www.lua.org/manual/5.1/manual.html#2.5
http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5.8
http://www.lua.org/manual/5.1/manual.html#2.5.8

 functioncall ::= prefixexp args

In a function call, first prefixexp and args are evaluated. If the value of prefixexp has type function, then this
function is called with the given arguments. Otherwise, the prefixexp “call” metamethod is called, having as first
parameter the value of prefixexp, followed by the original call arguments (see §2.8).

The form

 functioncall ::= prefixexp `:´ Name args

can be used to call “methods”. A call v:name(args) is syntactic sugar for v.name(v,args), except that v is
evaluated only once.

Arguments have the following syntax:

 args ::= `(´ [explist1] `)´
 args ::= tableconstructor
 args ::= String

All argument expressions are evaluated before the call. A call of the form f{fields} is syntactic sugar for
f({fields}); that is, the argument list is a single new table. A call of the form f'string' (or f"string" or
f[[string]]) is syntactic sugar for f('string'); that is, the argument list is a single literal string.

As an exception to the free-format syntax of Lua, you cannot put a line break before the '(' in a function call. This
restriction avoids some ambiguities in the language. If you write

 a = f
 (g).x(a)

Lua would see that as a single statement, a = f(g).x(a). So, if you want two statements, you must add a
semi-colon between them. If you actually want to call f, you must remove the line break before (g).

A call of the form return functioncall is called a tail call. Lua implements proper tail calls (or proper tail
recursion): in a tail call, the called function reuses the stack entry of the calling function. Therefore, there is no
limit on the number of nested tail calls that a program can execute. However, a tail call erases any debug
information about the calling function. Note that a tail call only happens with a particular syntax, where the
return has one single function call as argument; this syntax makes the calling function return exactly the returns
of the called function. So, none of the following examples are tail calls:

 return (f(x)) -- results adjusted to 1
 return 2 * f(x)
 return x, f(x) -- additional results
 f(x); return -- results discarded
 return x or f(x) -- results adjusted to 1

2.5.9 - Function Definitions

The syntax for function definition is

 function ::= function funcbody
 funcbody ::= `(´ [parlist1] `)´ block end

The following syntactic sugar simplifies function definitions:

 stat ::= function funcname funcbody
 stat ::= local function Name funcbody
 funcname ::= Name {`.´ Name} [`:´ Name]

The statement

 function f () body end

translates to

 f = function () body end

The statement

- 10 -

http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8

 function t.a.b.c.f () body end

translates to

 t.a.b.c.f = function () body end

The statement

 local function f () body end

translates to

 local f; f = function () body end

not to

 local f = function () body end

(This only makes a difference when the body of the function contains references to f.)

A function definition is an executable expression, whose value has type function. When Lua pre-compiles a
chunk, all its function bodies are pre-compiled too. Then, whenever Lua executes the function definition, the
function is instantiated (or closed). This function instance (or closure) is the final value of the expression.
Different instances of the same function may refer to different external local variables and may have different
environment tables.

Parameters act as local variables that are initialized with the argument values:

 parlist1 ::= namelist [`,´ `...´] | `...´

When a function is called, the list of arguments is adjusted to the length of the list of parameters, unless the
function is a variadic or vararg function, which is indicated by three dots ('...') at the end of its parameter list. A
vararg function does not adjust its argument list; instead, it collects all extra arguments and supplies them to the
function through a vararg expression, which is also written as three dots. The value of this expression is a list of
all actual extra arguments, similar to a function with multiple results. If a vararg expression is used inside
another expression or in the middle of a list of expressions, then its return list is adjusted to one element. If the
expression is used as the last element of a list of expressions, then no adjustment is made (unless the call is
enclosed in parentheses).

As an example, consider the following definitions:

 function f(a, b) end
 function g(a, b, ...) end
 function r() return 1,2,3 end

Then, we have the following mapping from arguments to parameters and to the vararg expression:

 CALL PARAMETERS

 f(3) a=3, b=nil
 f(3, 4) a=3, b=4
 f(3, 4, 5) a=3, b=4
 f(r(), 10) a=1, b=10
 f(r()) a=1, b=2

 g(3) a=3, b=nil, ... --> (nothing)
 g(3, 4) a=3, b=4, ... --> (nothing)
 g(3, 4, 5, 8) a=3, b=4, ... --> 5 8
 g(5, r()) a=5, b=1, ... --> 2 3

Results are returned using the return statement (see §2.4.4). If control reaches the end of a function without
encountering a return statement, then the function returns with no results.

The colon syntax is used for defining methods, that is, functions that have an implicit extra parameter self.
Thus, the statement

 function t.a.b.c:f (params) body end

- 11 -

http://www.lua.org/manual/5.1/manual.html#2.4.4
http://www.lua.org/manual/5.1/manual.html#2.4.4
http://www.lua.org/manual/5.1/manual.html#2.4.4

is syntactic sugar for

 t.a.b.c.f = function (self, params) body end

2.6 - Visibility Rules
Lua is a lexically scoped language. The scope of variables begins at the first statement after their declaration and
lasts until the end of the innermost block that includes the declaration. Consider the following example:

 x = 10 -- global variable
 do -- new block
 local x = x -- new 'x', with value 10
 print(x) --> 10
 x = x+1
 do -- another block
 local x = x+1 -- another 'x'
 print(x) --> 12
 end
 print(x) --> 11
 end
 print(x) --> 10 (the global one)

Notice that, in a declaration like local x = x, the new x being declared is not in scope yet, and so the second
x refers to the outside variable.

Because of the lexical scoping rules, local variables can be freely accessed by functions defined inside their scope.
A local variable used by an inner function is called an upvalue, or external local variable, inside the inner function.

Notice that each execution of a local statement defines new local variables. Consider the following example:

 a = {}
 local x = 20
 for i=1,10 do
 local y = 0
 a[i] = function () y=y+1; return x+y end
 end

The loop creates ten closures (that is, ten instances of the anonymous function). Each of these closures uses a
different y variable, while all of them share the same x.

2.7 - Error Handling
Because Lua is an embedded extension language, all Lua actions start from C code in the host program calling a
function from the Lua library (see lua_pcall). Whenever an error occurs during Lua compilation or execution,
control returns to C, which can take appropriate measures (such as printing an error message).

Lua code can explicitly generate an error by calling the error function. If you need to catch errors in Lua, you
can use the pcall function.

2.8 - Metatables
Every value in Lua may have a metatable. This metatable is an ordinary Lua table that defines the behavior of the
original value under certain special operations. You can change several aspects of the behavior of operations
over a value by setting specific fields in its metatable. For instance, when a non-numeric value is the operand of
an addition, Lua checks for a function in the field "__add" in its metatable. If it finds one, Lua calls this function
to perform the addition.

We call the keys in a metatable events and the values metamethods. In the previous example, the event is "add"
and the metamethod is the function that performs the addition.

You can query the metatable of any value through the getmetatable function.

You can replace the metatable of tables through the setmetatable function. You cannot change the metatable
of other types from Lua (except using the debug library); you must use the C API for that.

- 12 -

http://www.lua.org/manual/5.1/manual.html#pdf-setmetatable
http://www.lua.org/manual/5.1/manual.html#pdf-setmetatable
http://www.lua.org/manual/5.1/manual.html#pdf-setmetatable
http://www.lua.org/manual/5.1/manual.html#pdf-getmetatable
http://www.lua.org/manual/5.1/manual.html#pdf-getmetatable
http://www.lua.org/manual/5.1/manual.html#pdf-getmetatable
http://www.lua.org/manual/5.1/manual.html#pdf-pcall
http://www.lua.org/manual/5.1/manual.html#pdf-pcall
http://www.lua.org/manual/5.1/manual.html#pdf-pcall
http://www.lua.org/manual/5.1/manual.html#pdf-error
http://www.lua.org/manual/5.1/manual.html#pdf-error
http://www.lua.org/manual/5.1/manual.html#pdf-error
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_pcall
http://www.lua.org/manual/5.1/manual.html#lua_pcall

Tables and userdata have individual metatables (although multiple tables and userdata can share their
metatables); values of all other types share one single metatable per type. So, there is one single metatable for all
numbers, and for all strings, etc.

A metatable may control how an object behaves in arithmetic operations, order comparisons, concatenation,
length operation, and indexing. A metatable can also define a function to be called when a userdata is garbage
collected. For each of these operations Lua associates a specific key called an event. When Lua performs one of
these operations over a value, it checks whether this value has a metatable with the corresponding event. If so,
the value associated with that key (the metamethod) controls how Lua will perform the operation.

Metatables control the operations listed next. Each operation is identified by its corresponding name. The key for
each operation is a string with its name prefixed by two underscores, '__'; for instance, the key for operation
“add” is the string "__add". The semantics of these operations is better explained by a Lua function describing
how the interpreter executes the operation.

The code shown here in Lua is only illustrative; the real behavior is hard coded in the interpreter and it is much
more efficient than this simulation. All functions used in these descriptions (rawget, tonumber, etc.) are
described in §5.1. In particular, to retrieve the metamethod of a given object, we use the expression

 metatable(obj)[event]

This should be read as

 rawget(getmetatable(obj) or {}, event)

That is, the access to a metamethod does not invoke other metamethods, and the access to objects with no
metatables does not fail (it simply results in nil).

• “add”: the + operation.

The function getbinhandler below defines how Lua chooses a handler for a binary operation. First,
Lua tries the first operand. If its type does not define a handler for the operation, then Lua tries the
second operand.

 function getbinhandler (op1, op2, event)
 return metatable(op1)[event] or metatable(op2)[event]
 end

By using this function, the behavior of the op1 + op2 is

 function add_event (op1, op2)
 local o1, o2 = tonumber(op1), tonumber(op2)
 if o1 and o2 then -- both operands are numeric?
 return o1 + o2 -- '+' here is the primitive 'add'
 else -- at least one of the operands is not numeric
 local h = getbinhandler(op1, op2, "__add")
 if h then
 -- call the handler with both operands
 return h(op1, op2)
 else -- no handler available: default behavior
 error(···)
 end
 end
 end

• “sub”: the - operation. Behavior similar to the “add” operation.
• “mul”: the * operation. Behavior similar to the “add” operation.
• “div”: the / operation. Behavior similar to the “add” operation.
• “mod”: the % operation. Behavior similar to the “add” operation, with the operation o1 -

floor(o1/o2)*o2 as the primitive operation.
• “pow”: the ^ (exponentiation) operation. Behavior similar to the “add” operation, with the function pow

(from the C math library) as the primitive operation.
• “unm”: the unary - operation.

 function unm_event (op)
 local o = tonumber(op)

- 13 -

http://www.lua.org/manual/5.1/manual.html#5.1
http://www.lua.org/manual/5.1/manual.html#5.1
http://www.lua.org/manual/5.1/manual.html#5.1
http://www.lua.org/manual/5.1/manual.html#pdf-tonumber
http://www.lua.org/manual/5.1/manual.html#pdf-tonumber
http://www.lua.org/manual/5.1/manual.html#pdf-tonumber
http://www.lua.org/manual/5.1/manual.html#pdf-rawget
http://www.lua.org/manual/5.1/manual.html#pdf-rawget
http://www.lua.org/manual/5.1/manual.html#pdf-rawget

 if o then -- operand is numeric?
 return -o -- '-' here is the primitive 'unm'
 else -- the operand is not numeric.
 -- Try to get a handler from the operand
 local h = metatable(op).__unm
 if h then
 -- call the handler with the operand
 return h(op)
 else -- no handler available: default behavior
 error(···)
 end
 end
 end

• “concat”: the .. (concatenation) operation.

 function concat_event (op1, op2)
 if (type(op1) == "string" or type(op1) == "number") and
 (type(op2) == "string" or type(op2) == "number") then
 return op1 .. op2 -- primitive string concatenation
 else
 local h = getbinhandler(op1, op2, "__concat")
 if h then
 return h(op1, op2)
 else
 error(···)
 end
 end
 end

• “len”: the # operation.

 function len_event (op)
 if type(op) == "string" then
 return strlen(op) -- primitive string length
 elseif type(op) == "table" then
 return #op -- primitive table length
 else
 local h = metatable(op).__len
 if h then
 -- call the handler with the operand
 return h(op)
 else -- no handler available: default behavior
 error(···)
 end
 end
 end

See §2.5.5 for a description of the length of a table.

• “eq”: the == operation. The function getcomphandler defines how Lua chooses a metamethod for
comparison operators. A metamethod only is selected when both objects being compared have the same
type and the same metamethod for the selected operation.

 function getcomphandler (op1, op2, event)
 if type(op1) ~= type(op2) then return nil end
 local mm1 = metatable(op1)[event]
 local mm2 = metatable(op2)[event]
 if mm1 == mm2 then return mm1 else return nil end
 end

The “eq” event is defined as follows:

 function eq_event (op1, op2)
 if type(op1) ~= type(op2) then -- different types?
 return false -- different objects
 end
 if op1 == op2 then -- primitive equal?

- 14 -

http://www.lua.org/manual/5.1/manual.html#2.5.5
http://www.lua.org/manual/5.1/manual.html#2.5.5
http://www.lua.org/manual/5.1/manual.html#2.5.5

 return true -- objects are equal
 end
 -- try metamethod
 local h = getcomphandler(op1, op2, "__eq")
 if h then
 return h(op1, op2)
 else
 return false
 end
 end

a ~= b is equivalent to not (a == b).

• “lt”: the < operation.

 function lt_event (op1, op2)
 if type(op1) == "number" and type(op2) == "number" then
 return op1 < op2 -- numeric comparison
 elseif type(op1) == "string" and type(op2) == "string" then
 return op1 < op2 -- lexicographic comparison
 else
 local h = getcomphandler(op1, op2, "__lt")
 if h then
 return h(op1, op2)
 else
 error(···);
 end
 end
 end

a > b is equivalent to b < a.

• “le”: the <= operation.

 function le_event (op1, op2)
 if type(op1) == "number" and type(op2) == "number" then
 return op1 <= op2 -- numeric comparison
 elseif type(op1) == "string" and type(op2) == "string" then
 return op1 <= op2 -- lexicographic comparison
 else
 local h = getcomphandler(op1, op2, "__le")
 if h then
 return h(op1, op2)
 else
 h = getcomphandler(op1, op2, "__lt")
 if h then
 return not h(op2, op1)
 else
 error(···);
 end
 end
 end
 end

a >= b is equivalent to b <= a. Note that, in the absence of a “le” metamethod, Lua tries the “lt”,
assuming that a <= b is equivalent to not (b < a).

• “index”: The indexing access table[key].

 function gettable_event (table, key)
 local h
 if type(table) == "table" then
 local v = rawget(table, key)
 if v ~= nil then return v end
 h = metatable(table).__index
 if h == nil then return nil end
 else

- 15 -

 h = metatable(table).__index
 if h == nil then
 error(···);
 end
 end
 if type(h) == "function" then
 return h(table, key) -- call the handler
 else return h[key] -- or repeat operation on it
 end
 end

• “newindex”: The indexing assignment table[key] = value.

 function settable_event (table, key, value)
 local h
 if type(table) == "table" then
 local v = rawget(table, key)
 if v ~= nil then rawset(table, key, value); return end
 h = metatable(table).__newindex
 if h == nil then rawset(table, key, value); return end
 else
 h = metatable(table).__newindex
 if h == nil then
 error(···);
 end
 end
 if type(h) == "function" then
 return h(table, key,value) -- call the handler
 else h[key] = value -- or repeat operation on it
 end
 end

• “call”: called when Lua calls a value.

 function function_event (func, ...)
 if type(func) == "function" then
 return func(...) -- primitive call
 else
 local h = metatable(func).__call
 if h then
 return h(func, ...)
 else
 error(···)
 end
 end
 end

2.9 - Environments
Besides metatables, objects of types thread, function, and userdata have another table associated with them,
called their environment. Like metatables, environments are regular tables and multiple objects can share the
same environment.

Environments associated with userdata have no meaning for Lua. It is only a convenience feature for
programmers to associate a table to a userdata.

Environments associated with threads are called global environments. They are used as the default environment
for their threads and non-nested functions created by the thread (through loadfile, loadstring or load)
and can be directly accessed by C code (see §3.3).

Environments associated with C functions can be directly accessed by C code (see §3.3). They are used as the
default environment for other C functions created by the function.

Environments associated with Lua functions are used to resolve all accesses to global variables within the
function (see §2.3). They are used as the default environment for other Lua functions created by the function.

- 16 -

http://www.lua.org/manual/5.1/manual.html#2.3
http://www.lua.org/manual/5.1/manual.html#2.3
http://www.lua.org/manual/5.1/manual.html#2.3
http://www.lua.org/manual/5.1/manual.html#3.3
http://www.lua.org/manual/5.1/manual.html#3.3
http://www.lua.org/manual/5.1/manual.html#3.3
http://www.lua.org/manual/5.1/manual.html#3.3
http://www.lua.org/manual/5.1/manual.html#3.3
http://www.lua.org/manual/5.1/manual.html#3.3
http://www.lua.org/manual/5.1/manual.html#pdf-load
http://www.lua.org/manual/5.1/manual.html#pdf-load
http://www.lua.org/manual/5.1/manual.html#pdf-load
http://www.lua.org/manual/5.1/manual.html#pdf-loadstring
http://www.lua.org/manual/5.1/manual.html#pdf-loadstring
http://www.lua.org/manual/5.1/manual.html#pdf-loadstring
http://www.lua.org/manual/5.1/manual.html#pdf-loadfile
http://www.lua.org/manual/5.1/manual.html#pdf-loadfile
http://www.lua.org/manual/5.1/manual.html#pdf-loadfile

You can change the environment of a Lua function or the running thread by calling setfenv. You can get the
environment of a Lua function or the running thread by calling getfenv. To manipulate the environment of
other objects (userdata, C functions, other threads) you must use the C API.

2.10 - Garbage Collection
Lua performs automatic memory management. This means that you have to worry neither about allocating
memory for new objects nor about freeing it when the objects are no longer needed. Lua manages memory
automatically by running a garbage collector from time to time to collect all dead objects (that is, these objects
that are no longer accessible from Lua). All objects in Lua are subject to automatic management: tables, userdata,
functions, threads, and strings.

Lua implements an incremental mark-and-sweep collector. It uses two numbers to control its garbage-collection
cycles: the garbage-collector pause and the garbage-collector step multiplier.

The garbage-collector pause controls how long the collector waits before starting a new cycle. Larger values
make the collector less aggressive. Values smaller than 1 mean the collector will not wait to start a new cycle. A
value of 2 means that the collector waits for the total memory in use to double before starting a new cycle.

The step multiplier controls the relative speed of the collector relative to memory allocation. Larger values make
the collector more aggressive but also increase the size of each incremental step. Values smaller than 1 make the
collector too slow and may result in the collector never finishing a cycle. The default, 2, means that the collector
runs at "twice" the speed of memory allocation.

You can change these numbers by calling lua_gc in C or collectgarbage in Lua. Both get percentage points
as arguments (so an argument of 100 means a real value of 1). With these functions you can also control the
collector directly (e.g., stop and restart it).

2.10.1 - Garbage-Collection Metamethods

Using the C API, you can set garbage-collector metamethods for userdata (see §2.8). These metamethods are also
called finalizers. Finalizers allow you to coordinate Lua's garbage collection with external resource management
(such as closing files, network or database connections, or freeing your own memory).

Garbage userdata with a field __gc in their metatables are not collected immediately by the garbage collector.
Instead, Lua puts them in a list. After the collection, Lua does the equivalent of the following function for each
userdata in that list:

 function gc_event (udata)
 local h = metatable(udata).__gc
 if h then
 h(udata)
 end
 end

At the end of each garbage-collection cycle, the finalizers for userdata are called in reverse order of their creation,
among those collected in that cycle. That is, the first finalizer to be called is the one associated with the userdata
created last in the program.

2.10.2 - Weak Tables

A weak table is a table whose elements are weak references. A weak reference is ignored by the garbage collector.
In other words, if the only references to an object are weak references, then the garbage collector will collect this
object.

A weak table can have weak keys, weak values, or both. A table with weak keys allows the collection of its keys,
but prevents the collection of its values. A table with both weak keys and weak values allows the collection of
both keys and values. In any case, if either the key or the value is collected, the whole pair is removed from the
table. The weakness of a table is controlled by the __mode field of its metatable. If the __mode field is a string
containing the character 'k', the keys in the table are weak. If __mode contains 'v', the values in the table are
weak.

After you use a table as a metatable, you should not change the value of its field __mode. Otherwise, the weak
behavior of the tables controlled by this metatable is undefined.

- 17 -

http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#2.8
http://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage
http://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage
http://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage
http://www.lua.org/manual/5.1/manual.html#lua_gc
http://www.lua.org/manual/5.1/manual.html#lua_gc
http://www.lua.org/manual/5.1/manual.html#lua_gc
http://www.lua.org/manual/5.1/manual.html#pdf-getfenv
http://www.lua.org/manual/5.1/manual.html#pdf-getfenv
http://www.lua.org/manual/5.1/manual.html#pdf-getfenv
http://www.lua.org/manual/5.1/manual.html#pdf-setfenv
http://www.lua.org/manual/5.1/manual.html#pdf-setfenv
http://www.lua.org/manual/5.1/manual.html#pdf-setfenv

2.11 - Coroutines
Lua supports coroutines, also called collaborative multithreading. A coroutine in Lua represents an independent
thread of execution. Unlike threads in multithread systems, however, a coroutine only suspends its execution by
explicitly calling a yield function.

You create a coroutine with a call to coroutine.create. Its sole argument is a function that is the main
function of the coroutine. The create function only creates a new coroutine and returns a handle to it (an object
of type thread); it does not start the coroutine execution.

When you first call coroutine.resume, passing as its first argument the thread returned by
coroutine.create, the coroutine starts its execution, at the first line of its main function. Extra arguments
passed to coroutine.resume are passed on to the coroutine main function. After the coroutine starts running,
it runs until it terminates or yields.

A coroutine can terminate its execution in two ways: normally, when its main function returns (explicitly or
implicitly, after the last instruction); and abnormally, if there is an unprotected error. In the first case,
coroutine.resume returns true, plus any values returned by the coroutine main function. In case of errors,
coroutine.resume returns false plus an error message.

A coroutine yields by calling coroutine.yield. When a coroutine yields, the corresponding
coroutine.resume returns immediately, even if the yield happens inside nested function calls (that is, not in
the main function, but in a function directly or indirectly called by the main function). In the case of a yield,
coroutine.resume also returns true, plus any values passed to coroutine.yield. The next time you
resume the same coroutine, it continues its execution from the point where it yielded, with the call to
coroutine.yield returning any extra arguments passed to coroutine.resume.

Like coroutine.create, the coroutine.wrap function also creates a coroutine, but instead of returning
the coroutine itself, it returns a function that, when called, resumes the coroutine. Any arguments passed to this
function go as extra arguments to coroutine.resume. coroutine.wrap returns all the values returned by
coroutine.resume, except the first one (the boolean error code). Unlike coroutine.resume,
coroutine.wrap does not catch errors; any error is propagated to the caller.

As an example, consider the following code:

 function foo (a)
 print("foo", a)
 return coroutine.yield(2*a)
 end

 co = coroutine.create(function (a,b)
 print("co-body", a, b)
 local r = foo(a+1)
 print("co-body", r)
 local r, s = coroutine.yield(a+b, a-b)
 print("co-body", r, s)
 return b, "end"
 end)

 print("main", coroutine.resume(co, 1, 10))
 print("main", coroutine.resume(co, "r"))
 print("main", coroutine.resume(co, "x", "y"))
 print("main", coroutine.resume(co, "x", "y"))

When you run it, it produces the following output:

 co-body 1 10
 foo 2

 main true 4
 co-body r
 main true 11 -9
 co-body x y
 main true 10 end
 main false cannot resume dead coroutine

- 18 -

http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.wrap
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.yield
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.resume
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create
http://www.lua.org/manual/5.1/manual.html#pdf-coroutine.create

8 - The Complete Syntax of Lua
Here is the complete syntax of Lua in extended BNF. (It does not describe operator precedences.)

chunk ::= {stat [`;´]} [laststat [`;´]]
block ::= chunk
stat ::= varlist1 `=´ explist1 |

functioncall |
do block end |
while exp do block end |
repeat block until exp |
if exp then block {elseif exp then block} [else block] end |
for Name `=´ exp `,´ exp [`,´ exp] do block end |
for namelist in explist1 do block end |
function funcname funcbody |
local function Name funcbody |
local namelist [`=´ explist1]

laststat ::= return [explist1] | break
funcname ::= Name {`.´ Name} [`:´ Name]
varlist1 ::= var {`,´ var}
var ::= Name | prefixexp `[´ exp `]´ | prefixexp `.´ Name
namelist ::= Name {`,´ Name}
explist1 ::= {exp `,´} exp
exp ::= nil | false | true | Number | String | `...´ | function |

prefixexp | tableconstructor | exp binop exp | unop exp
prefixexp ::= var | functioncall | `(´ exp `)´
functioncall ::= prefixexp args | prefixexp `:´ Name args
args ::= `(´ [explist1] `)´ | tableconstructor | String
function ::= function funcbody
funcbody ::= `(´ [parlist1] `)´ block end
parlist1 ::= namelist [`,´ `...´] | `...´
tableconstructor ::= `{´ [fieldlist] `}´
fieldlist ::= field {fieldsep field} [fieldsep]
field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp
fieldsep ::= `,´ | `;´
binop ::= `+´ | `-´ | `*´ | `/´ | `^´ | `%´ | `..´ | `<´ | `<=´ | `>´ | `>=´ | `==´ | `~=´ | and | or
unop ::= `-´ | not | `#´

- 19 -

	Lua 5.1 Reference Manual
	1 - Introduction
	2 - The Language
	2.1 - Lexical Conventions
	2.2 - Values and Types
	2.2.1 - Coercion

	2.3 - Variables
	2.4 - Statements
	2.4.1 - Chunks
	2.4.2 - Blocks
	2.4.3 - Assignment
	2.4.4 - Control Structures
	2.4.5 - For Statement
	2.4.6 - Function Calls as Statements
	2.4.7 - Local Declarations

	2.5 - Expressions
	2.5.1 - Arithmetic Operators
	2.5.2 - Relational Operators
	2.5.3 - Logical Operators
	2.5.4 - Concatenation
	2.5.5 - The Length Operator
	2.5.6 - Precedence
	2.5.7 - Table Constructors
	2.5.8 - Function Calls
	2.5.9 - Function Definitions

	2.6 - Visibility Rules
	2.7 - Error Handling
	2.8 - Metatables
	2.9 - Environments
	2.10 - Garbage Collection
	2.10.1 - Garbage-Collection Metamethods
	2.10.2 - Weak Tables

	2.11 - Coroutines

	8 - The Complete Syntax of Lua

