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1 - Getting Started
To keep with the tradition, our first program in Lua just prints "Hello World": 
    print("Hello World")

If you are using the stand-alone Lua interpreter, all you have to do to run your first program is to 
call the interpreter (usually named lua) with the name of the text file that contains your program. 
For instance, if you write the above program in a file hello.lua, the following command should 
run it: 
    prompt> lua hello.lua

As a slightly more complex example, the following program defines a function to compute the 
factorial of a given number, asks the user for a number, and prints its factorial: 
    -- defines a factorial function
    function fact (n)
      if n == 0 then
        return 1
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      else
        return n * fact(n-1)
      end
    end
    
    print("enter a number:")
    a = io.read("*number")        -- read a number
    print(fact(a))

If you are using Lua embedded in an application, such as CGILua or IUPLua, you may need to refer 
to the application manual (or to a "local guru") to learn how to run your programs. Nevertheless, 
Lua is still the same language; most things that we will see here are valid regardless of how you are 
using Lua. For a start, we recommend that you use the stand-alone interpreter (that is, the lua 
executable) to run your first examples and experiments. 

1 - Getting Started
To keep with the tradition, our first program in Lua just prints "Hello World": 
    print("Hello World")

If you are using the stand-alone Lua interpreter, all you have to do to run your first program is to 
call the interpreter (usually named lua) with the name of the text file that contains your program. 
For instance, if you write the above program in a file hello.lua, the following command should 
run it: 
    prompt> lua hello.lua

As a slightly more complex example, the following program defines a function to compute the 
factorial of a given number, asks the user for a number, and prints its factorial: 
    -- defines a factorial function
    function fact (n)
      if n == 0 then
        return 1
      else
        return n * fact(n-1)
      end
    end
    
    print("enter a number:")
    a = io.read("*number")        -- read a number
    print(fact(a))

If you are using Lua embedded in an application, such as CGILua or IUPLua, you may need to refer 
to the application manual (or to a "local guru") to learn how to run your programs. Nevertheless, 
Lua is still the same language; most things that we will see here are valid regardless of how you are 
using Lua. For a start, we recommend that you use the stand-alone interpreter (that is, the lua 
executable) to run your first examples and experiments. 

1.1 - Chunks
Each piece of code that Lua executes, such as a file or a single line in interactive mode, is a chunk. 
More specifically, a chunk is simply a sequence of statements. 



A semicolon may optionally follow any statement. Usually, I use semicolons only to separate two or 
more statements written in the same line, but this is just a convention. Line breaks play no role in 
Lua's syntax; for instance, the following four chunks are all valid and equivalent: 
    a = 1
    b = a*2
    
    a = 1;
    b = a*2;
    
    a = 1 ; b = a*2
    
    a = 1   b = a*2    -- ugly, but valid

A chunk may be as simple as a single statement, such as in the "hello world" example, or it may be 
composed of a mix of statements and function definitions (which are assignments actually, as we 
will see later), such as the factorial example. A chunk may be as large as you wish. Because Lua is 
used also as a data-description language, chunks with several megabytes are not uncommon. The 
Lua interpreter has no problems at all with large sizes. 

Instead of writing your program to a file, you may run the stand-alone interpreter in interactive 
mode. If you call Lua without any arguments, you will get its prompt: 
    Lua 5.0  Copyright (C) 1994-2003 Tecgraf, PUC-Rio
    >

Thereafter, each command that you type (such as print "Hello World") executes 
immediately after you press <enter>. To exit the interactive mode and the interpreter, just type 
end-of-file (ctrl-D in Unix, ctrl-Z in DOS/Windows), or call the exit function, from the 
Operating System library (you have to type os.exit()<enter>). 

In interactive mode, Lua usually interprets each line that you type as a complete chunk. However, if 
it detects that the line cannot form a complete chunk, it waits for more input, until it has a complete 
chunk. When Lua is waiting for a line continuation, it shows a different prompt (typically >>). 
Therefore, you can enter a multi-line definition, such as the factorial function, directly in 
interactive mode. Sometimes, however, it is more convenient to put such definitions in a file, and 
then call Lua to run that file. 

You can execute a sequence of chunks by giving them all as arguments to the stand-alone 
interpreter, with the -l option. For instance, if you have a file a with a single statement x=1 and 
another file b with the statement print(x), the command line 
    prompt> lua -la -lb

will run the chunk in a, then the one in b, which will print the expected 1. (The -l option actually 
calls require, which looks for the files in a specific path. So, the previous example will not work 
if this path does not include the current directory. We will discuss the require function in more 
details in Section 8.1.) 

You may use the -i option to instruct Lua to start an interactive session after running the given 
chunks. A command line like 
    prompt> lua -i -la -lb

will run the chunk in a, then the one in b, and then prompt you for interaction. This is especially 
useful for debugging and manual testing. At the end of this chapter we will see other options for the 
stand-alone interpreter. 

Another way to link chunks is with the dofile function, which immediately executes a file. For 



instance, you may have a file lib1.lua: 
    -- file 'lib1.lua'
    
    function norm (x, y)
      local n2 = x^2 + y^2
      return math.sqrt(n2)
    end
    
    function twice (x)
      return 2*x
    end

Then, in interactive mode, you can type 
    > dofile("lib1.lua")   -- load your library
    > n = norm(3.4, 1.0)
    > print(twice(n))      --> 7.0880180586677

The dofile function is useful also when you are testing a piece of code. You can work with two 
windows: One of them is a text editor with your program (in a file prog.lua, say) and the other is 
a console running Lua in interactive mode. After saving a modification that you make to your 
program, you execute dofile("prog.lua") in the Lua console to load the new code; then you 
can exercise the new code, calling its functions and printing the results.

1.2 - Global Variables
Global variables do not need declarations. You simply assign a value to a global variable to create it. 
It is not an error to access a non-initialized variable; you just get the special value nil as the result: 
    print(b)  --> nil
    b = 10
    print(b)  --> 10

Usually you do not need to delete global variables; if your variable is going to have a short life, you 
should use a local variable. But, if you need to delete a global variable, just assign nil to it: 
    b = nil
    print(b)  --> nil

After that, it is as if the variable had never been used. In other words, a global variable is existent if 
(and only if) it has a non-nil value. 

1.3 - Some Lexical Conventions
Identifiers in Lua can be any string of letters, digits, and underscores, not beginning with a digit; for 
instance 
    i      j       i10      _ij
    aSomewhatLongName    _INPUT

You should avoid identifiers starting with an underscore followed by one or more uppercase letters 
(e.g., _VERSION); they are reserved for special uses in Lua. Usually, I reserve the identifier _ (a 
single underscore) for a dummy variable. 

In Lua, the concept of what is a letter is locale dependent. Therefore, with a proper locale, you can 
use variable names such as índice or ação. However, such names will make your program 



unsuitable to run in systems that do not support that locale. 

The following words are reserved; we cannot use them as identifiers: 
    and       break     do        else      elseif
    end       false     for       function  if
    in        local     nil       not       or
    repeat    return    then      true      until
    while

Lua is case-sensitive: and is a reserved word, but And and AND are two other different identifiers. 

A comment starts anywhere with a double hyphen (--) and runs until the end of the line. Lua also 
offers block comments, which start with --[[ and run until the corresponding ]]. A common 
trick, when we want to comment out a piece of code, is to write the following: 
    --[[
    print(10)         -- no action (comment)
    --]]

Now, if we add a single hyphen to the first line, the code is in again: 
    ---[[
    print(10)         --> 10
    --]]

In the first example, the -- in the last line is still inside the block comment. In the second example, 
the sequence ---[[ does not start a block comment; so, the print is outside comments. In this 
case, the last line becomes an independent comment, as it starts with --. 

1.4 - The Stand-Alone Interpreter
The stand-alone interpreter (also called lua.c due to its source file, or simply lua due to its 
executable) is a small program that allows the direct use of Lua. This section presents its main 
options. 

When the interpreter loads a file, it ignores its first line if that line starts with a number sign (`#´). 
That feature allows the use of Lua as a script interpreter in Unix systems. If you start your program 
with something like 
    #!/usr/local/bin/lua

(assuming that the stand-alone interpreter is located at /usr/local/bin), or 
    #!/usr/bin/env lua

then you can call the program directly, without explicitly calling the Lua interpreter. 

The usage of lua is 
    lua [options] [script [args]]

Everything is optional. As we have seen already, when we call lua without arguments the 
interpreter enters in interactive mode. 

The -e option allows us to enter code directly into the command line. For instance, 
    prompt> lua -e "print(math.sin(12))"   --> -0.53657291800043



(Unix needs the double quotes to stop the shell from interpreting the parentheses.) As we previously 
saw, -l loads a file and -i enters interactive mode after running the other arguments. So, for 
instance, the call 
    prompt> lua -i -l a.lua -e "x = 10"

will load the file a.lua, then execute the assignment x = 10, and finally present a prompt for 
interaction. 

Whenever the global variable _PROMPT is defined, lua uses its value as the prompt when 
interacting. So, you can change the prompt with a call like this: 
    prompt> lua -i -e "_PROMPT=' lua> '"
     lua>

We are assuming that "prompt" is the system's prompt. In the example, the outer quotes stop the 
shell from interpreting the inner quotes, which are interpreted by Lua. More exactly, Lua receives 
the following command to run: 
    _PROMPT=' lua> '

which assigns the string " lua> " to the global variable _PROMPT. 

Before it starts running arguments, lua looks for an environment variable called LUA_INIT. If 
there is such a variable and its content is @filename, then lua loads the given file. If LUA_INIT is 
defined but does not start with `@´, then lua assumes that it contains Lua code and runs it. This 
variable gives you great power when configuring the stand-alone interpreter, because you have the 
full power of Lua in the configuration. You can pre-load packages, change the prompt and the path, 
define your own functions, rename or delete functions, and so on. 

A main script can retrieve its arguments in the global variable arg. In a call like 
    prompt> lua script a b c

lua creates the table arg with all the command-line arguments, before running the script. The 
script name goes into index 0; its first argument (a in the example), goes to index 1, and so on. 
Eventual options go to negative indices, as they appear before the script. For instance, in the call 
    prompt> lua -e "sin=math.sin" script a b

lua collects the arguments as follows: 
    arg[-3] = "lua"
    arg[-2] = "-e"
    arg[-1] = "sin=math.sin"
    arg[0] = "script"
    arg[1] = "a"
    arg[2] = "b"

More often than not, the script only uses the positive indices (arg[1] and arg[2], in the 
example). 

2 - Types and Values
Lua is a dynamically typed language. There are no type definitions in the language; each value 
carries its own type. 



There are eight basic types in Lua: nil, boolean, number, string, userdata, function, thread, and 
table. The type function gives the type name of a given value: 
    print(type("Hello world"))  --> string
    print(type(10.4*3))         --> number
    print(type(print))          --> function
    print(type(type))           --> function
    print(type(true))           --> boolean
    print(type(nil))            --> nil
    print(type(type(X)))        --> string

The last example will result in "string" no matter the value of X, because the result of type is 
always a string. 

Variables have no predefined types; any variable may contain values of any type: 
    print(type(a))   --> nil   (`a' is not initialized)
    a = 10
    print(type(a))   --> number
    a = "a string!!"
    print(type(a))   --> string
    a = print        -- yes, this is valid!
    a(type(a))       --> function

Notice the last two lines: Functions are first-class values in Lua; so, we can manipulate them like 
any other value. (More about that in Chapter 6.) 

Usually, when you use a single variable for different types, the result is messy code. However, 
sometimes the judicious use of this facility is helpful, for instance in the use of nil to differentiate a 
normal return value from an exceptional condition. 

2.1 - Nil
Nil is a type with a single value, nil, whose main property is to be different from any other value. 
As we have seen, a global variable has a nil value by default, before a first assignment, and you can 
assign nil to a global variable to delete it. Lua uses nil as a kind of non-value, to represent the 
absence of a useful value. 

2.2 - Booleans
The boolean type has two values, false and true, which represent the traditional boolean values. 
However, they do not hold a monopoly of condition values: In Lua, any value may represent a 
condition. Conditionals (such as the ones in control structures) consider false and nil as false and 
anything else as true. Beware that, unlike some other scripting languages, Lua considers both zero 
and the empty string as true in conditional tests. 

2.3 - Numbers
The number type represents real (double-precision floating-point) numbers. Lua has no integer type, 
as it does not need it. There is a widespread misconception about floating-point arithmetic errors 
and some people fear that even a simple increment can go weird with floating-point numbers. The 
fact is that, when you use a double to represent an integer, there is no rounding error at all (unless 



the number is greater than 100,000,000,000,000). Specifically, a Lua number can represent any long 
integer without rounding problems. Moreover, most modern CPUs do floating-point arithmetic as 
fast as (or even faster than) integer arithmetic. 

It is easy to compile Lua so that it uses another type for numbers, such as longs or single-precision 
floats. This is particularly useful for platforms without hardware support for floating point. See the 
distribution for detailed instructions. 

We can write numeric constants with an optional decimal part, plus an optional decimal exponent. 
Examples of valid numeric constants are: 
    4     0.4     4.57e-3     0.3e12     5e+20

2.4 - Strings
Strings have the usual meaning: a sequence of characters. Lua is eight-bit clean and so strings may 
contain characters with any numeric value, including embedded zeros. That means that you can 
store any binary data into a string. Strings in Lua are immutable values. You cannot change a 
character inside a string, as you may in C; instead, you create a new string with the desired 
modifications, as in the next example: 
    a = "one string"
    b = string.gsub(a, "one", "another")  -- change string parts
    print(a)       --> one string
    print(b)       --> another string

Strings in Lua are subject to automatic memory management, like all Lua objects. That means that 
you do not have to worry about allocation and deallocation of strings; Lua handles this for you. A 
string may contain a single letter or an entire book. Lua handles long strings quite efficiently. 
Programs that manipulate strings with 100K or 1M characters are not unusual in Lua. 

We can delimit literal strings by matching single or double quotes: 
    a = "a line"
    b = 'another line'

As a matter of style, you should use always the same kind of quotes (single or double) in a program, 
unless the string itself has quotes; then you use the other quote, or escape those quotes with 
backslashes. Strings in Lua can contain the following C-like escape sequences: 

\a bell
\b back space
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\" double quote
\' single quote
\[ left square bracket
\] right square bracket

We illustrate their use in the following examples: 



    > print("one line\nnext line\n\"in quotes\", 'in quotes'")
    one line
    next line
    "in quotes", 'in quotes'
    > print('a backslash inside quotes: \'\\\'')
    a backslash inside quotes: '\'
    > print("a simpler way: '\\'")
    a simpler way: '\'

We can specify a character in a string also by its numeric value through the escape sequence \ddd, 
where ddd is a sequence of up to three decimal digits. As a somewhat complex example, the two 
literals "alo\n123\"" and '\97lo\10\04923"' have the same value, in a system using 
ASCII: 97 is the ASCII code for a, 10 is the code for newline, and 49 (\049 in the example) is the 
code for the digit 1. 

We can delimit literal strings also by matching double square brackets [[...]]. Literals in this 
bracketed form may run for several lines, may nest, and do not interpret escape sequences. 
Moreover, this form ignores the first character of the string when this character is a newline. This 
form is especially convenient for writing strings that contain program pieces; for instance, 
    page = [[
    <HTML>
    <HEAD>
    <TITLE>An HTML Page</TITLE>
    </HEAD>
    <BODY>
     <A HREF="http://www.lua.org">Lua</A>
     [[a text between double brackets]]
    </BODY>
    </HTML>
    ]]
    
    write(page)

Lua provides automatic conversions between numbers and strings at run time. Any numeric 
operation applied to a string tries to convert the string to a number: 
    print("10" + 1)           --> 11
    print("10 + 1")           --> 10 + 1
    print("-5.3e-10"*"2")     --> -1.06e-09
    print("hello" + 1)        -- ERROR (cannot convert "hello")

Lua applies such coercions not only in arithmetic operators, but also in other places that expect a 
number. Conversely, whenever it finds a number where it expects a string, Lua converts the number 
to a string: 
    print(10 .. 20)        --> 1020

(The .. is the string concatenation operator in Lua. When you write it right after a numeral, you 
must separate them with a space; otherwise, Lua thinks that the first dot is a decimal point.) 

Despite those automatic conversions, strings and numbers are different things. A comparison like 
10 == "10" is always false, because 10 is a number and "10" is a string. If you need to convert 
a string to a number explicitly, you can use the function tonumber, which returns nil if the string 
does not denote a proper number: 
    line = io.read()     -- read a line
    n = tonumber(line)   -- try to convert it to a number
    if n == nil then
      error(line .. " is not a valid number")



    else
      print(n*2)
    end

To convert a number to a string, you can call the function tostring or concatenate the number 
with the empty string: 
    print(tostring(10) == "10")   --> true
    print(10 .. "" == "10")       --> true

Such conversions are always valid. 

2.5 - Tables
The table type implements associative arrays. An associative array is an array that can be indexed 
not only with numbers, but also with strings or any other value of the language, except nil. 
Moreover, tables have no fixed size; you can add as many elements as you want to a table 
dynamically. Tables are the main (in fact, the only) data structuring mechanism in Lua, and a 
powerful one. We use tables to represent ordinary arrays, symbol tables, sets, records, queues, and 
other data structures, in a simple, uniform, and efficient way. Lua uses tables to represent packages 
as well. When we write io.read, we mean "the read entry from the io package". For Lua, that 
means "index the table io using the string "read" as the key". 

Tables in Lua are neither values nor variables; they are objects. If you are familiar with arrays in 
Java or Scheme, then you have a fair idea of what we mean. However, if your idea of an array 
comes from C or Pascal, you have to open your mind a bit. You may think of a table as a 
dynamically allocated object; your program only manipulates references (or pointers) to them. 
There are no hidden copies or creation of new tables behind the scenes. Moreover, you do not have 
to declare a table in Lua; in fact, there is no way to declare one. You create tables by means of a 
constructor expression, which in its simplest form is written as {}: 
    a = {}     -- create a table and store its reference in `a'
    k = "x"
    a[k] = 10        -- new entry, with key="x" and value=10
    a[20] = "great"  -- new entry, with key=20 and value="great"
    print(a["x"])    --> 10
    k = 20
    print(a[k])      --> "great"
    a["x"] = a["x"] + 1     -- increments entry "x"
    print(a["x"])    --> 11

A table is always anonymous. There is no fixed relationship between a variable that holds a table 
and the table itself: 
    a = {}
    a["x"] = 10
    b = a      -- `b' refers to the same table as `a'
    print(b["x"])  --> 10
    b["x"] = 20
    print(a["x"])  --> 20
    a = nil    -- now only `b' still refers to the table
    b = nil    -- now there are no references left to the table

When a program has no references to a table left, Lua memory management will eventually delete 
the table and reuse its memory. 

Each table may store values with different types of indices and it grows as it needs to accommodate 



new entries: 
    a = {}     -- empty table
    -- create 1000 new entries
    for i=1,1000 do a[i] = i*2 end
    print(a[9])    --> 18
    a["x"] = 10
    print(a["x"])  --> 10
    print(a["y"])  --> nil

Notice the last line: Like global variables, table fields evaluate to nil if they are not initialized. Also 
like global variables, you can assign nil to a table field to delete it. That is not a coincidence: Lua 
stores global variables in ordinary tables. More about this subject in Chapter 14. 

To represent records, you use the field name as an index. Lua supports this representation by 
providing a.name as syntactic sugar for a["name"]. So, we could write the last lines of the 
previous example in a cleanlier manner as 
    a.x = 10                    -- same as a["x"] = 10
    print(a.x)                  -- same as print(a["x"])
    print(a.y)                  -- same as print(a["y"])

For Lua, the two forms are equivalent and can be intermixed freely; but for a human reader, each 
form may signal a different intention. 

A common mistake for beginners is to confuse a.x with a[x]. The first form represents a["x"], 
that is, a table indexed by the string "x". The second form is a table indexed by the value of the 
variable x. See the difference: 
    a = {}
    x = "y"
    a[x] = 10                 -- put 10 in field "y"
    print(a[x])   --> 10      -- value of field "y"
    print(a.x)    --> nil     -- value of field "x" (undefined)
    print(a.y)    --> 10      -- value of field "y"

To represent a conventional array, you simply use a table with integer keys. There is no way to 
declare its size; you just initialize the elements you need: 
    -- read 10 lines storing them in a table
    a = {}
    for i=1,10 do
      a[i] = io.read()
    end

When you iterate over the elements of the array, the first non-initialized index will result in nil; you 
can use this value as a sentinel to represent the end of the array. For instance, you could print the 
lines read in the last example with the following code: 
    -- print the lines
    for i,line in ipairs(a) do
      print(line)
    end

The basic Lua library provides ipairs, a handy function that allows you to iterate over the 
elements of an array, following the convention that the array ends at its first nil element. 

Since you can index a table with any value, you can start the indices of an array with any number 
that pleases you. However, it is customary in Lua to start arrays with one (and not with zero, as in 
C) and the standard libraries stick to this convention. 



Because we can index a table with any type, when indexing a table we have the same subtleties that 
arise in equality. Although we can index a table both with the number 0 and with the string "0", 
these two values are different (according to equality) and therefore denote different positions in a 
table. By the same token, the strings "+1", "01", and "1" all denote different positions. When in 
doubt about the actual types of your indices, use an explicit conversion to be sure: 
    i = 10; j = "10"; k = "+10"
    a = {}
    a[i] = "one value"
    a[j] = "another value"
    a[k] = "yet another value"
    print(a[j])            --> another value
    print(a[k])            --> yet another value
    print(a[tonumber(j)])  --> one value
    print(a[tonumber(k)])  --> one value

You can introduce subtle bugs in your program if you do not pay attention to this point. 

2.6 - Functions
Functions are first-class values in Lua. That means that functions can be stored in variables, passed 
as arguments to other functions, and returned as results. Such facilities give great flexibility to the 
language: A program may redefine a function to add new functionality, or simply erase a function to 
create a secure environment when running a piece of untrusted code (such as code received through 
a network). Moreover, Lua offers good support for functional programming, including nested 
functions with proper lexical scoping; just wait. Finally, first-class functions play a key role in Lua's 
object-oriented facilities, as we will see in Chapter 16. 

Lua can call functions written in Lua and functions written in C. All the standard library in Lua is 
written in C. It comprises functions for string manipulation, table manipulation, I/O, access to basic 
operating system facilities, mathematical functions, and debugging. Application programs may 
define other functions in C. 

2.7 - Userdata and Threads
The userdata type allows arbitrary C data to be stored in Lua variables. It has no predefined 
operations in Lua, except assignment and equality test. Userdata are used to represent new types 
created by an application program or a library written in C; for instance, the standard I/O library 
uses them to represent files. We will discuss more about userdata later, when we get to the C API. 

We will explain the thread type in Chapter 9, where we discuss coroutines. 

3 - Expressions
Expressions denote values. Expressions in Lua include the numeric constants and string literals, 
variables, unary and binary operations, and function calls. Expressions can be also the 
unconventional function definitions and table constructors. 



3.1 - Arithmetic Operators
Lua supports the usual arithmetic operators: the binary `+´ (addition), `-´ (subtraction), `*´ 
(multiplication), `/´ (division), and the unary `-´ (negation). All of them operate on real numbers. 

Lua also offers partial support for `^´ (exponentiation). One of the design goals of Lua is to have a 
tiny core. An exponentiation operation (implemented through the pow function in C) would mean 
that we should always need to link Lua with the C mathematical library. To avoid this need, the core 
of Lua offers only the syntax for the `^´ binary operator, which has the higher precedence among all 
operations. The mathematical library (which is standard, but not part of the Lua core) gives to this 
operator its expected meaning. 

3.2 - Relational Operators
Lua provides the following relational operators: 
    <   >   <=  >=  ==  ~=

All these operators always result in true or false. 

The operator == tests for equality; the operator ~= is the negation of equality. We can apply both 
operators to any two values. If the values have different types, Lua considers them different values. 
Otherwise, Lua compares them according to their types. Specifically, nil is equal only to itself. 

Lua compares tables, userdata, and functions by reference, that is, two such values are considered 
equal only if they are the very same object. For instance, after the code 
    a = {}; a.x = 1; a.y = 0
    b = {}; b.x = 1; b.y = 0
    c = a

you have that a==c but a~=b. 

We can apply the order operators only to two numbers or to two strings. Lua compares numbers in 
the usual way. Lua compares strings in alphabetical order, which follows the locale set for Lua. For 
instance, with the European Latin-1 locale, we have "acai" < "açaí" < "acorde". Other 
types can be compared only for equality (and inequality). 

When comparing values with different types, you must be careful: Remember that "0"==0 is false. 
Moreover, 2<15 is obviously true, but "2"<"15" is false (alphabetical order!). To avoid 
inconsistent results, Lua raises an error when you mix strings and numbers in an order comparison, 
such as 2<"15". 

3.3 - Logical Operators
The logical operators are and, or, and not. Like control structures, all logical operators consider 
false and nil as false and anything else as true. The operator and returns its first argument if it is 
false; otherwise, it returns its second argument. The operator or returns its first argument if it is not 
false; otherwise, it returns its second argument: 
    print(4 and 5)         --> 5
    print(nil and 13)      --> nil
    print(false and 13)    --> false
    print(4 or 5)          --> 4



    print(false or 5)      --> 5

Both and and or use short-cut evaluation, that is, they evaluate their second operand only when 
necessary. 

A useful Lua idiom is x = x or v, which is equivalent to 
    if not x then x = v end

i.e., it sets x to a default value v when x is not set (provided that x is not set to false). 

Another useful idiom is (a and b) or c (or simply a and b or c, because and has a 
higher precedence than or), which is equivalent to the C expression 
    a ? b : c

provided that b is not false. For instance, we can select the maximum of two numbers x and y with 
a statement like 
    max = (x > y) and x or y

When x > y, the first expression of the and is true, so the and results in its second expression (x) 
(which is also true, because it is a number), and then the or expression results in the value of its first 
expression, x. When x > y is false, the and expression is false and so the or results in its second 
expression, y. 

The operator not always returns true or false: 
    print(not nil)      --> true
    print(not false)    --> true
    print(not 0)        --> false
    print(not not nil)  --> false

3.4 - Concatenation
Lua denotes the string concatenation operator by ".." (two dots). If any of its operands is a 
number, Lua converts that number to a string. 
    print("Hello " .. "World")  --> Hello World
    print(0 .. 1)               --> 01

Remember that strings in Lua are immutable values. The concatenation operator always creates a 
new string, without any modification to its operands: 
    a = "Hello"
    print(a .. " World")   --> Hello World
    print(a)               --> Hello

3.5 - Precedence
Operator precedence in Lua follows the table below, from the higher to the lower priority: 
             ^
             not  - (unary)
             *   /
             +   -



             ..
             <   >   <=  >=  ~=  ==
             and
             or

All binary operators are left associative, except for `^´ (exponentiation) and `..´ (concatenation), 
which are right associative. Therefore, the following expressions on the left are equivalent to those 
on the right: 
    a+i < b/2+1          <-->       (a+i) < ((b/2)+1)
    5+x^2*8              <-->       5+((x^2)*8)
    a < y and y <= z     <-->       (a < y) and (y <= z)
    -x^2                 <-->       -(x^2)
    x^y^z                <-->       x^(y^z)

When in doubt, always use explicit parentheses. It is easier than looking up in the manual and 
probably you will have the same doubt when you read the code again. 

3.6 - Table Constructors
Constructors are expressions that create and initialize tables. They are a distinctive feature of Lua 
and one of its most useful and versatile mechanisms. 

The simplest constructor is the empty constructor, {}, which creates an empty table; we saw it 
before. Constructors also initialize arrays (called also sequences or lists). For instance, the statement 
    days = {"Sunday", "Monday", "Tuesday", "Wednesday",
            "Thursday", "Friday", "Saturday"}

will initialize days[1] with the string "Sunday" (the first element has always index 1, not 0), 
days[2] with "Monday", and so on: 
    print(days[4])  --> Wednesday

Constructors do not need to use only constant expressions. We can use any kind of expression for 
the value of each element. For instance, we can build a short sine table as 
    tab = {sin(1), sin(2), sin(3), sin(4),
           sin(5), sin(6), sin(7), sin(8)}

To initialize a table to be used as a record, Lua offers the following syntax: 
    a = {x=0, y=0}

which is equivalent to 
    a = {}; a.x=0; a.y=0

No matter what constructor we use to create a table, we can always add and remove other fields of 
any type to it: 
    w = {x=0, y=0, label="console"}
    x = {sin(0), sin(1), sin(2)}
    w[1] = "another field"
    x.f = w
    print(w["x"])   --> 0
    print(w[1])     --> another field
    print(x.f[1])   --> another field
    w.x = nil       -- remove field "x"



That is, all tables are created equal; constructors only affect their initialization. 

Every time Lua evaluates a constructor, it creates and initializes a new table. Consequently, we can 
use tables to implement linked lists: 
    list = nil
    for line in io.lines() do
      list = {next=list, value=line}
    end

This code reads lines from the standard input and stores them in a linked list, in reverse order. Each 
node in the list is a table with two fields: value, with the line contents, and next, with a reference 
to the next node. The following code prints the list contents: 
    l = list
    while l do
      print(l.value)
      l = l.next
    end

(Because we implemented our list as a stack, the lines will be printed in reverse order.) Although 
instructive, we hardly use the above implementation in real Lua programs; lists are better 
implemented as arrays, as we will see in Chapter 11. 

We can mix record-style and list-style initializations in the same constructor: 
    polyline = {color="blue", thickness=2, npoints=4,
                 {x=0,   y=0},
                 {x=-10, y=0},
                 {x=-10, y=1},
                 {x=0,   y=1}
               }

The above example also illustrates how we can nest constructors to represent more complex data 
structures. Each of the elements polyline[1], ..., polyline[4] is a table representing a 
record: 
    print(polyline[2].x)    --> -10

Those two constructor forms have their limitations. For instance, you cannot initialize fields with 
negative indices, or with string indices that are not proper identifiers. For such needs, there is 
another, more general, format. In this format, we explicitly write the index to be initialized as an 
expression, between square brackets: 
    opnames = {["+"] = "add", ["-"] = "sub",
               ["*"] = "mul", ["/"] = "div"}
    
    i = 20; s = "-"
    a = {[i+0] = s, [i+1] = s..s, [i+2] = s..s..s}
    
    print(opnames[s])    --> sub
    print(a[22])         --> ---

That syntax is more cumbersome, but more flexible too: Both the list-style and the record-style 
forms are special cases of this more general one. The constructor 
    {x=0, y=0}

is equivalent to 
    {["x"]=0, ["y"]=0}



and the constructor 
    {"red", "green", "blue"}

is equivalent to 
    {[1]="red", [2]="green", [3]="blue"}

For those that really want their arrays starting at 0, it is not difficult to write the following: 
    days = {[0]="Sunday", "Monday", "Tuesday", "Wednesday",
            "Thursday", "Friday", "Saturday"}

Now, the first value, "Sunday", is at index 0. That zero does not affect the other fields, but 
"Monday" naturally goes to index 1, because it is the first list value in the constructor; the other 
values follow it. Despite this facility, I do not recommend the use of arrays starting at 0 in Lua. 
Remember that most functions assume that arrays start at index 1, and therefore will not handle 
such arrays correctly. 

You can always put a comma after the last entry. These trailing commas are optional, but are always 
valid: 
    a = {[1]="red", [2]="green", [3]="blue",}

Such flexibility makes it easier to write programs that generate Lua tables, because they do not need 
to handle the last element as a special case. 

Finally, you can always use a semicolon instead of a comma in a constructor. We usually reserve 
semicolons to delimit different sections in a constructor, for instance to separate its list part from its 
record part: 
    {x=10, y=45; "one", "two", "three"}

4 - Statements
Lua supports an almost conventional set of statements, similar to those in C or Pascal. The 
conventional statements include assignment, control structures, and procedure calls. Lua also 
supports some not so conventional statements, such as multiple assignments and local variable 
declarations. 

4.1 - Assignment
Assignment is the basic means of changing the value of a variable or a table field: 
    a = "hello" .. "world"
    t.n = t.n + 1

Lua allows multiple assignment, where a list of values is assigned to a list of variables in one step. 
Both lists have their elements separated by commas. For instance, in the assignment 
    a, b = 10, 2*x

the variable a gets the value 10 and b gets 2*x. 

In a multiple assignment, Lua first evaluates all values and only then executes the assignments. 



Therefore, we can use a multiple assignment to swap two values, as in 
    x, y = y, x                -- swap `x' for `y'
    a[i], a[j] = a[j], a[i]    -- swap `a[i]' for `a[j]'

Lua always adjusts the number of values to the number of variables: When the list of values is 
shorter than the list of variables, the extra variables receive nil as their values; when the list of 
values is longer, the extra values are silently discarded: 
    a, b, c = 0, 1
    print(a,b,c)           --> 0   1   nil
    a, b = a+1, b+1, b+2   -- value of b+2 is ignored
    print(a,b)             --> 1   2
    a, b, c = 0
    print(a,b,c)           --> 0   nil   nil

The last assignment in the above example shows a common mistake. To initialize a set of variables, 
you must provide a value for each one: 
    a, b, c = 0, 0, 0
    print(a,b,c)           --> 0   0   0

Actually, most of the previous examples are somewhat artificial. I seldom use multiple assignment 
simply to write several assignments in one line. But often we really need multiple assignment. We 
already saw an example, to swap two values. A more frequent use is to collect multiple returns from 
function calls. As we will discuss in detail later, a function call can return multiple values. In such 
cases, a single expression can supply the values for several variables. For instance, in the 
assignment 
    a, b = f()

f() returns two results: a gets the first and b gets the second. 

4.2 - Local Variables and Blocks
Besides global variables, Lua supports local variables. We create local variables with the local 
statement: 
    j = 10         -- global variable
    local i = 1    -- local variable

Unlike global variables, local variables have their scope limited to the block where they are 
declared. A block is the body of a control structure, the body of a function, or a chunk (the file or 
string with the code where the variable is declared). 
    x = 10
    local i = 1        -- local to the chunk
    
    while i<=x do
      local x = i*2    -- local to the while body
      print(x)         --> 2, 4, 6, 8, ...
      i = i + 1
    end
    
    if i > 20 then
      local x          -- local to the "then" body
      x = 20
      print(x + 2)
    else



      print(x)         --> 10  (the global one)
    end
    
    print(x)           --> 10  (the global one)

Beware that this example will not work as expected if you enter it in interactive mode. The second 
line, local i = 1, is a complete chunk by itself. As soon as you enter this line, Lua runs it and 
starts a new chunk in the next line. By then, the local declaration is already out of scope. To run 
such examples in interactive mode, you should enclose all the code in a do block. 

It is good programming style to use local variables whenever possible. Local variables help you 
avoid cluttering the global environment with unnecessary names. Moreover, the access to local 
variables is faster than to global ones. 

Lua handles local variable declarations as statements. As such, you can write local declarations 
anywhere you can write a statement. The scope begins after the declaration and goes until the end of 
the block. The declaration may include an initial assignment, which works the same way as a 
conventional assignment: Extra values are thrown away; extra variables get nil. As a specific case, 
if a declaration has no initial assignment, it initializes all its variables with nil. 
    local a, b = 1, 10
    if a<b then
      print(a)   --> 1
      local a    -- `= nil' is implicit
      print(a)   --> nil
    end          -- ends the block started at `then'
    print(a,b)   -->  1   10

A common idiom in Lua is 
    local foo = foo

This code creates a local variable, foo, and initializes it with the value of the global variable foo. 
That idiom is useful when the chunk needs to preserve the original value of foo even if later some 
other function changes the value of the global foo; it also speeds up access to foo. 

Because many languages force you to declare all local variables at the beginning of a block (or a 
procedure), some people think it is a bad practice to use declarations in the middle of a block. Quite 
the opposite: By declaring a variable only when you need it, you seldom need to declare it without 
an initial value (and therefore you seldom forget to initialize it). Moreover, you shorten the scope of 
the variable, which increases readability. 

We can delimit a block explicitly, bracketing it with the keywords do-end. These do blocks can be 
useful when you need finer control over the scope of one or more local variables: 
    do
      local a2 = 2*a
      local d = sqrt(b^2 - 4*a*c)
      x1 = (-b + d)/a2
      x2 = (-b - d)/a2
    end          -- scope of `a2' and `d' ends here
    print(x1, x2)

4.3 - Control Structures
Lua provides a small and conventional set of control structures, with if for conditional and while, 
repeat, and for for iteration. All control structures have an explicit terminator: end terminates the 
if, for and while structures; and until terminates the repeat structure. 



The condition expression of a control structure may result in any value. Lua treats as true all values 
different from false and nil. 

4.3.1 - if then else
An if statement tests its condition and executes its then-part or its else-part accordingly. The else-
part is optional. 
    if a<0 then a = 0 end
    
    if a<b then return a else return b end
    
    if line > MAXLINES then
      showpage()
      line = 0
    end

When you write nested ifs, you can use elseif. It is similar to an else followed by an if, but it avoids 
the need for multiple ends: 
    if op == "+" then
      r = a + b
    elseif op == "-" then
      r = a - b
    elseif op == "*" then
      r = a*b
    elseif op == "/" then
      r = a/b
    else
      error("invalid operation")
    end

4.3.2 - while
As usual, Lua first tests the while condition; if the condition is false, then the loop ends; otherwise, 
Lua executes the body of the loop and repeats the process. 
    local i = 1
    while a[i] do
      print(a[i])
      i = i + 1
    end

4.3.3 - repeat
As the name implies, a repeat-until statement repeats its body until its condition is true. The test is 
done after the body, so the body is always executed at least once. 
    -- print the first non-empty line
    repeat
      line = os.read()
    until line ~= ""
    print(line)

4.3.4 - Numeric for
The for statement has two variants: the numeric for and the generic for. 



A numeric for has the following syntax: 
    for var=exp1,exp2,exp3 do
      something
    end

That loop will execute something for each value of var from exp1 to exp2, using exp3 as the 
step to increment var. This third expression is optional; when absent, Lua assumes one as the step 
value. As typical examples of such loops, we have 
    for i=1,f(x) do print(i) end
    
    for i=10,1,-1 do print(i) end

The for loop has some subtleties that you should learn in order to make good use of it. First, all 
three expressions are evaluated once, before the loop starts. For instance, in the first example, f(x) 
is called only once. Second, the control variable is a local variable automatically declared by the for 
statement and is visible only inside the loop. A typical mistake is to assume that the variable still 
exists after the loop ends: 
    for i=1,10 do print(i) end
    max = i      -- probably wrong! `i' here is global

If you need the value of the control variable after the loop (usually when you break the loop), you 
must save this value into another variable: 
    -- find a value in a list
    local found = nil
    for i=1,a.n do
      if a[i] == value then
        found = i      -- save value of `i'
        break
      end
    end
    print(found)

Third, you should never change the value of the control variable: The effect of such changes is 
unpredictable. If you want to break a for loop before its normal termination, use break. 

4.3.5 - Generic for
The generic for loop allows you to traverse all values returned by an iterator function. We have 
already seen examples of the generic for: 
    -- print all values of array `a'
    for i,v in ipairs(a) do print(v) end

For each step in that code, i gets an index, while v gets the value associated with that index. A 
similar example shows how we traverse all keys of a table: 
    -- print all keys of table `t'
    for k in pairs(t) do print(k) end

Despite its apparent simplicity, the generic for is powerful. With proper iterators, we can traverse 
almost anything, and do it in a readable fashion. The standard libraries provide several iterators, 
which allow us to iterate over the lines of a file (io.lines), the pairs in a table (pairs), the 
words of a string (string.gfind, which we will see in Chapter 20), and so on. Of course, we 



can write our own iterators. Although the use of the generic for is easy, the task of writing iterator 
functions has its subtleties. We will cover this topic later, in Chapter 7. 

The generic loop shares two properties with the numeric loop: The loop variables are local to the 
loop body and you should never assign any value to the loop variables. 

Let us see a more concrete example of the use of a generic for. Suppose you have a table with the 
names of the days of the week: 
    days = {"Sunday", "Monday", "Tuesday", "Wednesday",
            "Thursday", "Friday", "Saturday"}

Now you want to translate a name into its position in the week. You can search the table, looking 
for the given name. Frequently, however, a more efficient approach in Lua is to build a reverse 
table, say revDays, that has the names as indices and the numbers as values. That table would 
look like this: 
    revDays = {["Sunday"] = 1, ["Monday"] = 2,
                ["Tuesday"] = 3, ["Wednesday"] = 4,
                ["Thursday"] = 5, ["Friday"] = 6,
                ["Saturday"] = 7}

Then, all you have to do to find the order of a name is to index this reverse table: 
    x = "Tuesday"
    print(revDays[x])    --> 3

Of course, we do not need to manually declare the reverse table. We can build it automatically from 
the original one: 
    revDays = {}
    for i,v in ipairs(days) do
      revDays[v] = i
    end

The loop will do the assignment for each element of days, with the variable i getting the index (1, 
2, ...) and v the value ("Sunday", "Monday", ...). 

4.4 - break and return
The break and return statements allow us to jump out from an inner block. 

You use the break statement to finish a loop. This statement breaks the inner loop (for, repeat, or 
while) that contains it; it cannot be used outside a loop. After the break, the program continues 
running from the point immediately after the broken loop. 

A return statement returns occasional results from a function or simply finishes a function. There is 
an implicit return at the end of any function, so you do not need to use one if your function ends 
naturally, without returning any value. 

For syntactic reasons, a break or return can appear only as the last statement of a block (in other 
words, as the last statement in your chunk or just before an end, an else, or an until). For instance, 
in the next example, break is the last statement of the then block. 
    local i = 1
    while a[i] do
      if a[i] == v then break end
      i = i + 1
    end



Usually, these are the places where we use these statements, because any other statement following 
them is unreachable. Sometimes, however, it may be useful to write a return (or a break) in the 
middle of a block; for instance, if you are debugging a function and want to avoid its execution. In 
such cases, you can use an explicit do block around the statement: 
    function foo ()
      return          --<< SYNTAX ERROR
      -- `return' is the last statement in the next block
      do return end   -- OK
      ...             -- statements not reached
    end

5 - Functions
Functions are the main mechanism for abstraction of statements and expressions in Lua. Functions 
can both carry out a specific task (what is sometimes called procedure or subroutine in other 
languages) or compute and return values. In the first case, we use a function call as a statement; in 
the second case, we use it as an expression: 
    print(8*9, 9/8)
    a = math.sin(3) + math.cos(10)
    print(os.date())

In both cases, we write a list of arguments enclosed in parentheses. If the function call has no 
arguments, we must write an empty list () to indicate the call. There is a special case to this rule: If 
the function has one single argument and this argument is either a literal string or a table 
constructor, then the parentheses are optional: 
    print "Hello World"     <-->     print("Hello World")
    dofile 'a.lua'          <-->     dofile ('a.lua')
    print [[a multi-line    <-->     print([[a multi-line
     message]]                        message]])
    f{x=10, y=20}           <-->     f({x=10, y=20})
    type{}                  <-->     type({})

Lua also offers a special syntax for object-oriented calls, the colon operator. An expression like 
o:foo(x) is just another way to write o.foo(o, x), that is, to call o.foo adding o as a first 
extra argument. In Chapter 16 we will discuss such calls (and object-oriented programming) in 
more detail. 

Functions used by a Lua program can be defined both in Lua and in C (or in any other language 
used by the host application). For instance, all library functions are written in C; but this fact has no 
relevance to Lua programmers. When calling a function, there is no difference between functions 
defined in Lua and functions defined in C. 

As we have seen in other examples, a function definition has a conventional syntax; for instance 
    -- add all elements of array `a'
    function add (a)
      local sum = 0
      for i,v in ipairs(a) do
        sum = sum + v
      end
      return sum
    end

In that syntax, a function definition has a name (add, in the previous example), a list of parameters, 
and a body, which is a list of statements. 



Parameters work exactly as local variables, initialized with the actual arguments given in the 
function call. You can call a function with a number of arguments different from its number of 
parameters. Lua adjusts the number of arguments to the number of parameters, as it does in a 
multiple assignment: Extra arguments are thrown away; extra parameters get nil. For instance, if we 
have a function like 
    function f(a, b) return a or b end

we will have the following mapping from arguments to parameters: 
    CALL             PARAMETERS
       
    f(3)             a=3, b=nil
    f(3, 4)          a=3, b=4
    f(3, 4, 5)       a=3, b=4   (5 is discarded)

Although this behavior can lead to programming errors (easily spotted at run time), it is also useful, 
especially for default arguments. For instance, consider the following function, to increment a 
global counter. 
    function incCount (n)
      n = n or 1
      count = count + n
    end

This function has 1 as its default argument; that is, the call incCount(), without arguments, 
increments count by one. When you call incCount(), Lua first initializes n with nil; the or 
results in its second operand; and as a result Lua assigns a default 1 to n. 

5.1 - Multiple Results
An unconventional, but quite convenient feature of Lua is that functions may return multiple 
results. Several predefined functions in Lua return multiple values. An example is the 
string.find function, which locates a pattern in a string. It returns two indices: the index of the 
character where the pattern match starts and the one where it ends (or nil if it cannot find the 
pattern). A multiple assignment allows the program to get both results: 
    s, e = string.find("hello Lua users", "Lua")
    
    print(s, e)   -->  7      9

Functions written in Lua also can return multiple results, by listing them all after the return 
keyword. For instance, a function to find the maximum element in an array can return both the 
maximum value and its location: 
    function maximum (a)
      local mi = 1          -- maximum index
      local m = a[mi]       -- maximum value
      for i,val in ipairs(a) do
        if val > m then
          mi = i
          m = val
        end
      end
      return m, mi
    end
    
    print(maximum({8,10,23,12,5}))     --> 23   3



Lua always adjusts the number of results from a function to the circumstances of the call. When we 
call a function as a statement, Lua discards all of its results. When we use a call as an expression, 
Lua keeps only the first result. We get all results only when the call is the last (or the only) 
expression in a list of expressions. These lists appear in four constructions in Lua: multiple 
assignment, arguments to function calls, table constructors, and return statements. To illustrate all 
these uses, we will assume the following definitions for the next examples: 
    function foo0 () end                  -- returns no results
    function foo1 () return 'a' end       -- returns 1 result
    function foo2 () return 'a','b' end   -- returns 2 results

In a multiple assignment, a function call as the last (or only) expression produces as many results as 
needed to match the variables: 
    x,y = foo2()        -- x='a', y='b'
    x = foo2()          -- x='a', 'b' is discarded
    x,y,z = 10,foo2()   -- x=10, y='a', z='b'

If a function has no results, or not as many results as we need, Lua produces nils: 
    x,y = foo0()      -- x=nil, y=nil
    x,y = foo1()      -- x='a', y=nil
    x,y,z = foo2()    -- x='a', y='b', z=nil

A function call that is not the last element in the list always produces one result: 
    x,y = foo2(), 20      -- x='a', y=20
    x,y = foo0(), 20, 30  -- x='nil', y=20, 30 is discarded

When a function call is the last (or the only) argument to another call, all results from the first call 
go as arguments. We have seen examples of this construction already, with print: 
    print(foo0())          -->
    print(foo1())          -->  a
    print(foo2())          -->  a   b
    print(foo2(), 1)       -->  a   1
    print(foo2() .. "x")   -->  ax         (see below)

When the call to foo2 appears inside an expression, Lua adjusts the number of results to one; so, in 
the last line, only the "a" is used in the concatenation. 

The print function may receive a variable number of arguments. (In the next section we will see 
how to write functions with variable number of arguments.) If we write f(g()) and f has a fixed 
number of arguments, Lua adjusts the number of results of g to the number of parameters of f, as 
we saw previously. 

A constructor also collects all results from a call, without any adjustments: 
    a = {foo0()}         -- a = {}  (an empty table)
    a = {foo1()}         -- a = {'a'}
    a = {foo2()}         -- a = {'a', 'b'}

As always, this behavior happens only when the call is the last in the list; otherwise, any call 
produces exactly one result: 
    a = {foo0(), foo2(), 4}   -- a[1] = nil, a[2] = 'a', a[3] = 4

Finally, a statement like return f() returns all values returned by f: 
    function foo (i)
      if i == 0 then return foo0()



      elseif i == 1 then return foo1()
      elseif i == 2 then return foo2()
      end
    end
    
    print(foo(1))     --> a
    print(foo(2))     --> a  b
    print(foo(0))     -- (no results)
    print(foo(3))     -- (no results)

You can force a call to return exactly one result by enclosing it in an extra pair of parentheses: 
    print((foo0()))        --> nil
    print((foo1()))        --> a
    print((foo2()))        --> a

Beware that a return statement does not need parentheses around the returned value, so any pair of 
parentheses placed there counts as an extra pair. That is, a statement like return (f()) always 
returns one single value, no matter how many values f returns. Maybe this is what you want, maybe 
not. 

A special function with multiple returns is unpack. It receives an array and returns as results all 
elements from the array, starting from index 1: 
    print(unpack{10,20,30})    --> 10   20   30
    a,b = unpack{10,20,30}     -- a=10, b=20, 30 is discarded

An important use for unpack is in a generic call mechanism. A generic call mechanism allows you 
to call any function, with any arguments, dynamically. In ANSI C, for instance, there is no way to 
do that. You can declare a function that receives a variable number of arguments (with stdarg.h) 
and you can call a variable function, using pointers to functions. However, you cannot call a 
function with a variable number of arguments: Each call you write in C has a fixed number of 
arguments and each argument has a fixed type. In Lua, if you want to call a variable function f with 
variable arguments in an array a, you simply write 
    f(unpack(a))

The call to unpack returns all values in a, which become the arguments to f. For instance, if we 
execute 
    f = string.find
    a = {"hello", "ll"}

then the call f(unpack(a)) returns 3 and 4, exactly the same as the static call 
string.find("hello", "ll"). 

Although the predefined unpack is written in C, we could write it also in Lua, using recursion: 
    function unpack (t, i)
      i = i or 1
      if t[i] ~= nil then
        return t[i], unpack(t, i + 1)
      end
    end

The first time we call it, with a single argument, i gets 1. Then the function returns t[1] followed 
by all results from unpack(t, 2), which in turn returns t[2] followed by all results from 
unpack(t, 3), and so on, until the last non-nil element. 



5.2 - Variable Number of Arguments
Some functions in Lua receive a variable number of arguments. For instance, we have already 
called print with one, two, and more arguments. 

Suppose now that we want to redefine print in Lua: Perhaps our system does not have a stdout 
and so, instead of printing its arguments, print stores them in a global variable, for later use. We 
can write this new function in Lua as follows: 
    printResult = ""
    
    function print (...)
      for i,v in ipairs(arg) do
        printResult = printResult .. tostring(v) .. "\t"
      end
      printResult = printResult .. "\n"
    end

The three dots (...) in the parameter list indicate that the function has a variable number of 
arguments. When this function is called, all its arguments are collected in a single table, which the 
function accesses as a hidden parameter named arg. Besides those arguments, the arg table has an 
extra field, n, with the actual number of arguments collected. 

Sometimes, a function has some fixed parameters plus a variable number of parameters. Let us see 
an example. When we write a function that returns multiple values into an expression, only its first 
result is used. However, sometimes we want another result. A typical solution is to use dummy 
variables; for instance, if we want only the second result from string.find, we may write the 
following code: 
    local _, x = string.find(s, p)
    -- now use `x'
    ...

An alternative solution is to define a select function, which selects a specific return from a 
function: 
    print(string.find("hello hello", " hel"))         --> 6  9
    print(select(1, string.find("hello hello", " hel"))) --> 6
    print(select(2, string.find("hello hello", " hel"))) --> 9

Notice that a call to select has always one fixed argument, the selector, plus a variable number of 
extra arguments (the returns of a function). To accommodate this fixed argument, a function may 
have regular parameters before the dots. Then, Lua assigns the first arguments to those parameters 
and only the extra arguments (if any) go to arg. To better illustrate this point, assume a definition 
like 
    function g (a, b, ...) end

Then, we have the following mapping from arguments to parameters: 
    CALL            PARAMETERS
       
    g(3)             a=3, b=nil, arg={n=0}
    g(3, 4)          a=3, b=4, arg={n=0}
    g(3, 4, 5, 8)    a=3, b=4, arg={5, 8; n=2}

Using those regular parameters, the definition of select is straightforward: 
    function select (n, ...)
      return arg[n]



    end

Sometimes, a function with a variable number of arguments needs to pass them all to another 
function. All it has to do is to call the other function using unpack(arg) as argument: unpack 
will return all values in arg, which will be passed to the other function. A good example of this use 
is a function to write formatted text. Lua provides separate functions to format text 
(string.format, similar to the sprintf function from the C library) and to write text 
(io.write). Of course, it is easy to combine both functions into a single one, except that this new 
function has to pass a variable number of values to format. This is a job for unpack: 
    function fwrite (fmt, ...)
      return io.write(string.format(fmt, unpack(arg)))
    end

5.3 - Named Arguments
The parameter passing mechanism in Lua is positional: When we call a function, arguments match 
parameters by their positions. The first argument gives the value to the first parameter, and so on. 
Sometimes, however, it is useful to specify the arguments by name. To illustrate this point, let us 
consider the function rename (from the os library), which renames a file. Quite often, we forget 
which name comes first, the new or the old; therefore, we may want to redefine this function to 
receive its two arguments by name: 
    -- invalid code
    rename(old="temp.lua", new="temp1.lua")

Lua has no direct support for that syntax, but we can have the same final effect, with a small syntax 
change. The idea here is to pack all arguments into a table and use that table as the only argument to 
the function. The special syntax that Lua provides for function calls, with just one table constructor 
as argument, helps the trick: 
    rename{old="temp.lua", new="temp1.lua"}

Accordingly, we define rename with only one parameter and get the actual arguments from this 
parameter: 
    function rename (arg)
      return os.rename(arg.old, arg.new)
    end

This style of parameter passing is especially helpful when the function has many parameters, and 
most of them are optional. For instance, a function that creates a new window in a GUI library may 
have dozens of arguments, most of them optional, which are best specified by names: 
    w = Window{ x=0, y=0, width=300, height=200,
                title = "Lua", background="blue",
                border = true
              }

The Window function then has the freedom to check for mandatory arguments, add default values, 
and the like. Assuming a primitive _Window function that actually creates the new window (and 
that needs all arguments), we could define Window as follows: 
    function Window (options)
      -- check mandatory options
      if type(options.title) ~= "string" then
        error("no title")



      elseif type(options.width) ~= "number" then
        error("no width")
      elseif type(options.height) ~= "number" then
        error("no height")
      end
    
      -- everything else is optional
      _Window(options.title,
              options.x or 0,    -- default value
              options.y or 0,    -- default value
              options.width, options.height,
              options.background or "white",   -- default
              options.border      -- default is false (nil)
             )
    end

6 - More about Functions
Functions in Lua are first-class values with proper lexical scoping. 

What does it mean for functions to be "first-class values"? It means that, in Lua, a function is a 
value with the same rights as conventional values like numbers and strings. Functions can be stored 
in variables (both global and local) and in tables, can be passed as arguments, and can be returned 
by other functions. 

What does it mean for functions to have "lexical scoping"? It means that functions can access 
variables of its enclosing functions. (It also means that Lua contains the lambda calculus properly.) 
As we will see in this chapter, this apparently innocuous property brings great power to the 
language, because it allows us to apply in Lua many powerful programming techniques from the 
functional-language world. Even if you have no interest at all in functional programming, it is worth 
learning a little about how to explore those techniques, because they can make your programs 
smaller and simpler. 

A somewhat difficult notion in Lua is that functions, like all other values, are anonymous; they do 
not have names. When we talk about a function name, say print, we are actually talking about a 
variable that holds that function. Like any other variable holding any other value, we can 
manipulate such variables in many ways. The following example, although a little silly, shows the 
point: 
    a = {p = print}
    a.p("Hello World") --> Hello World
    print = math.sin  -- `print' now refers to the sine function
    a.p(print(1))     --> 0.841470
    sin = a.p         -- `sin' now refers to the print function
    sin(10, 20)       --> 10      20

Later we will see more useful applications for this facility. 

If functions are values, are there any expressions that create functions? Yes. In fact, the usual way to 
write a function in Lua, like 
    function foo (x) return 2*x end

is just an instance of what we call syntactic sugar; in other words, it is just a pretty way to write 
    foo = function (x) return 2*x end

That is, a function definition is in fact a statement (an assignment, more specifically) that assigns a 
value of type "function" to a variable. We can see the expression function (x) ... end 



as a function constructor, just as {} is a table constructor. We call the result of such function 
constructors an anonymous function. Although we usually assign functions to global names, giving 
them something like a name, there are several occasions when functions remain anonymous. Let us 
see some examples. 

The table library provides a function table.sort, which receives a table and sorts its elements. 
Such a function must allow unlimited variations in the sort order: ascending or descending, numeric 
or alphabetical, tables sorted by a key, and so on. Instead of trying to provide all kinds of options, 
sort provides a single optional parameter, which is the order function: a function that receives two 
elements and returns whether the first must come before the second in the sort. For instance, 
suppose we have a table of records such as 
     network = {
       {name = "grauna",  IP = "210.26.30.34"},
       {name = "arraial", IP = "210.26.30.23"},
       {name = "lua",     IP = "210.26.23.12"},
       {name = "derain",  IP = "210.26.23.20"},
     }

If we want to sort the table by the field name, in reverse alphabetical order, we just write 
    table.sort(network, function (a,b)
      return (a.name > b.name)
    end)

See how handy the anonymous function is in that statement. 

A function that gets another function as an argument, such as sort, is what we call a higher-order 
function. Higher-order functions are a powerful programming mechanism and the use of 
anonymous functions to create their function arguments is a great source of flexibility. But 
remember that higher-order functions have no special rights; they are a simple consequence of the 
ability of Lua to handle functions as first-class values. 

To illustrate the use of functions as arguments, we will write a naive implementation of a common 
higher-order function, plot, that plots a mathematical function. Below we show this 
implementation, using some escape sequences to draw on an ANSI terminal. (You may need to 
change these control sequences to adapt this code to your terminal type.) 
    function eraseTerminal ()
      io.write("\27[2J")
    end

    -- writes an `*' at column `x' , row `y'
    function mark (x,y)
      io.write(string.format("\27[%d;%dH*", y, x))
    end

    -- Terminal size
    TermSize = {w = 80, h = 24}
    
    -- plot a function
    -- (assume that domain and image are in the range [-1,1])
    function plot (f)
      eraseTerminal()
      for i=1,TermSize.w do
         local x = (i/TermSize.w)*2 - 1
         local y = (f(x) + 1)/2 * TermSize.h
         mark(i, y)
      end
      io.read()  -- wait before spoiling the screen



    end

With that definition in place, you can plot the sine function with a call like 
    plot(function (x) return math.sin(x*2*math.pi) end)

(We need to massage the data a little to put values in the proper range.) When we call plot, its 
parameter f gets the value of the given anonymous function, which is then called inside the for 
loop repeatedly to provide the values for the plotting. 

Because functions are first-class values in Lua, we can store them not only in global variables, but 
also in local variables and in table fields. As we will see later, the use of functions in table fields is a 
key ingredient for some advanced uses of Lua, such as packages and object-oriented programming. 

6.1 - Closures
When a function is written enclosed in another function, it has full access to local variables from the 
enclosing function; this feature is called lexical scoping. Although that may sound obvious, it is not. 
Lexical scoping, plus first-class functions, is a powerful concept in a programming language, but 
few languages support that concept. 

Let us start with a simple example. Suppose you have a list of student names and a table that 
associates names to grades; you want to sort the list of names, according to their grades (higher 
grades first). You can do this task as follows: 
    names = {"Peter", "Paul", "Mary"}
    grades = {Mary = 10, Paul = 7, Peter = 8}
    table.sort(names, function (n1, n2)
      return grades[n1] > grades[n2]    -- compare the grades
    end)

Now, suppose you want to create a function to do this task: 
    function sortbygrade (names, grades)
      table.sort(names, function (n1, n2)
        return grades[n1] > grades[n2]    -- compare the grades
      end)
    end

The interesting point in the example is that the anonymous function given to sort accesses the 
parameter grades, which is local to the enclosing function sortbygrade. Inside this 
anonymous function, grades is neither a global variable nor a local variable. We call it an 
external local variable, or an upvalue. (The term "upvalue" is a little misleading, because grades 
is a variable, not a value. However, this term has historical roots in Lua and it is shorter than 
"external local variable".) 

Why is that so interesting? Because functions are first-class values. Consider the following code: 
    function newCounter ()
      local i = 0
      return function ()   -- anonymous function
               i = i + 1
               return i
             end
    end
    
    c1 = newCounter()
    print(c1())  --> 1



    print(c1())  --> 2

Now, the anonymous function uses an upvalue, i, to keep its counter. However, by the time we call 
the anonymous function, i is already out of scope, because the function that created that variable 
(newCounter) has returned. Nevertheless, Lua handles that situation correctly, using the concept 
of closure. Simply put, a closure is a function plus all it needs to access its upvalues correctly. If we 
call newCounter again, it will create a new local variable i, so we will get a new closure, acting 
over that new variable: 
    c2 = newCounter()
    print(c2())  --> 1
    print(c1())  --> 3
    print(c2())  --> 2

So, c1 and c2 are different closures over the same function and each acts upon an independent 
instantiation of the local variable i. Technically speaking, what is a value in Lua is the closure, not 
the function. The function itself is just a prototype for closures. Nevertheless, we will continue to 
use the term "function" to refer to a closure whenever there is no possibility of confusion. 

Closures provide a valuable tool in many contexts. As we have seen, they are useful as arguments to 
higher-order functions such as sort. Closures are valuable for functions that build other functions 
too, like our newCounter example; this mechanism allows Lua programs to incorporate fancy 
programming techniques from the functional world. Closures are useful for callback functions, too. 
The typical example here occurs when you create buttons in a typical GUI toolkit. Each button has a 
callback function to be called when the user presses the button; you want different buttons to do 
slightly different things when pressed. For instance, a digital calculator needs ten similar buttons, 
one for each digit. You can create each of them with a function like the next one: 
    function digitButton (digit)
      return Button{ label = digit,
                     action = function ()
                                add_to_display(digit)
                              end
                   }
    end

In this example, we assume that Button is a toolkit function that creates new buttons; label is 
the button label; and action is the callback function to be called when the button is pressed. (It is 
actually a closure, because it accesses the upvalue digit.) The callback function can be called a 
long time after digitButton did its task and after the local variable digit went out of scope, 
but it can still access that variable. 

Closures are valuable also in a quite different context. Because functions are stored in regular 
variables, we can easily redefine functions in Lua, even predefined functions. This facility is one of 
the reasons Lua is so flexible. Frequently, however, when you redefine a function you need the 
original function in the new implementation. For instance, suppose you want to redefine the 
function sin to operate in degrees instead of radians. This new function must convert its argument, 
and then call the original sin function to do the real work. Your code could look like 
    oldSin = math.sin
    math.sin = function (x)
      return oldSin(x*math.pi/180)
    end

A cleaner way to do that is as follows: 
    do
      local oldSin = math.sin



      local k = math.pi/180
      math.sin = function (x)
        return oldSin(x*k)
      end
    end

Now, we keep the old version in a private variable; the only way to access it is through the new 
version. 

You can use this same feature to create secure environments, also called sandboxes. Secure 
environments are essential when running untrusted code, such as code received through the Internet 
by a server. For instance, to restrict the files a program can access, we can redefine the open 
function (from the io library) using closures: 
    do
      local oldOpen = io.open
      io.open = function (filename, mode)
        if access_OK(filename, mode) then
          return oldOpen(filename, mode)
        else
          return nil, "access denied"
        end
      end
    end

What makes this example nice is that, after that redefinition, there is no way for the program to call 
the unrestricted open, except through the new, restricted version. It keeps the insecure version as a 
private variable in a closure, inaccessible from the outside. With this facility, you can build Lua 
sandboxes in Lua itself, with the usual benefit: flexibility. Instead of a one-size-fits-all solution, Lua 
offers you a meta-mechanism, so that you can tailor your environment for your specific security 
needs. 

6.2 - Non-Global Functions
An obvious consequence of first-class functions is that we can store functions not only in global 
variables, but also in table fields and in local variables. 

We have already seen several examples of functions in table fields: Most Lua libraries use this 
mechanism (e.g., io.read, math.sin). To create such functions in Lua, we only have to put 
together the regular syntax for functions and for tables: 
    Lib = {}
    Lib.foo = function (x,y) return x + y end
    Lib.goo = function (x,y) return x - y end

Of course, we can also use constructors: 
    Lib = {
      foo = function (x,y) return x + y end,
      goo = function (x,y) return x - y end
    }

Moreover, Lua offers yet another syntax to define such functions: 
    Lib = {}
    function Lib.foo (x,y)
      return x + y
    end



    function Lib.goo (x,y)
      return x - y
    end

This last fragment is exactly equivalent to the first example. 

When we store a function into a local variable we get a local function, that is, a function that is 
restricted to a given scope. Such definitions are particularly useful for packages: Because Lua 
handles each chunk as a function, a chunk may declare local functions, which are visible only inside 
the chunk. Lexical scoping ensures that other functions in the package can use these local functions: 
    local f = function (...)
      ...
    end
    
    local g = function (...)
      ...
      f()   -- external local `f' is visible here
      ...
    end

Lua supports such uses of local functions with a syntactic sugar for them: 
    local function f (...)
      ...
    end

A subtle point arises in the definition of recursive local functions. The naive approach does not 
work here: 
    local fact = function (n)
      if n == 0 then return 1
      else return n*fact(n-1)   -- buggy
      end
    end

When Lua compiles the call fact(n-1), in the function body, the local fact is not yet defined. 
Therefore, that expression calls a global fact, not the local one. To solve that problem, we must 
first define the local variable and then define the function: 
    local fact
    fact = function (n)
      if n == 0 then return 1
      else return n*fact(n-1)
      end
    end

Now the fact inside the function refers to the local variable. Its value when the function is defined 
does not matter; by the time the function executes, fact already has the right value. That is the 
way Lua expands its syntactic sugar for local functions, so you can use it for recursive functions 
without worrying: 
    local function fact (n)
      if n == 0 then return 1
      else return n*fact(n-1)
      end
    end

Of course, this trick does not work if you have indirect recursive functions. In such cases, you must 
use the equivalent of an explicit forward declaration: 



    local f, g    -- `forward' declarations
    
    function g ()
      ...  f() ...
    end
    
    function f ()
      ...  g() ...
    end

6.3 - Proper Tail Calls
Another interesting feature of functions in Lua is that they do proper tail calls. (Several authors use 
the term proper tail recursion, although the concept does not involve recursion directly.) 

A tail call is a kind of goto dressed as a call. A tail call happens when a function calls another as its 
last action, so it has nothing else to do. For instance, in the following code, the call to g is a tail call: 
    function f (x)
      return g(x)
    end

After f calls g, it has nothing else to do. In such situations, the program does not need to return to 
the calling function when the called function ends. Therefore, after the tail call, the program does 
not need to keep any information about the calling function in the stack. Some language 
implementations, such as the Lua interpreter, take advantage of this fact and actually do not use any 
extra stack space when doing a tail call. We say that those implementations support proper tail  
calls. 

Because a proper tail call uses no stack space, there is no limit on the number of "nested" tail calls 
that a program can make. For instance, we can call the following function with any number as 
argument; it will never overflow the stack: 
    function foo (n)
      if n > 0 then return foo(n - 1) end
    end

A subtle point when we use proper tail calls is what is a tail call. Some obvious candidates fail the 
criteria that the calling function has nothing to do after the call. For instance, in the following code, 
the call to g is not a tail call: 
    function f (x)
      g(x)
      return
    end

The problem in that example is that, after calling g, f still has to discard occasional results from g 
before returning. Similarly, all the following calls fail the criteria: 
    return g(x) + 1     -- must do the addition
    return x or g(x)    -- must adjust to 1 result
    return (g(x))       -- must adjust to 1 result

In Lua, only a call in the format return g(...) is a tail call. However, both g and its arguments 
can be complex expressions, because Lua evaluates them before the call. For instance, the next call 
is a tail call: 
      return x[i].foo(x[j] + a*b, i + j)



As I said earlier, a tail call is a kind of goto. As such, a quite useful application of proper tail calls in 
Lua is for programming state machines. Such applications can represent each state by a function; to 
change state is to go to (or to call) a specific function. As an example, let us consider a simple maze 
game. The maze has several rooms, each with up to four doors: north, south, east, and west. At each 
step, the user enters a movement direction. If there is a door in that direction, the user goes to the 
corresponding room; otherwise, the program prints a warning. The goal is to go from an initial room 
to a final room. 

This game is a typical state machine, where the current room is the state. We can implement such 
maze with one function for each room. We use tail calls to move from one room to another. A small 
maze with four rooms could look like this: 
    function room1 ()
      local move = io.read()
      if move == "south" then return room3()
      elseif move == "east" then return room2()
      else print("invalid move")
           return room1()   -- stay in the same room
      end
    end
    
    function room2 ()
      local move = io.read()
      if move == "south" then return room4()
      elseif move == "west" then return room1()
      else print("invalid move")
           return room2()
      end
    end
    
    function room3 ()
      local move = io.read()
      if move == "north" then return room1()
      elseif move == "east" then return room4()
      else print("invalid move")
           return room3()
      end
    end
    
    function room4 ()
      print("congratulations!")
    end

We start the game with a call to the initial room: 
    room1()

Without proper tail calls, each user move would create a new stack level. After some number of 
moves, there would be a stack overflow. With proper tail calls, there is no limit to the number of 
moves that a user can make, because each move actually performs a goto to another function, not a 
conventional call. 

For this simple game, you may find that a data-driven program, where you describe the rooms and 
movements with tables, is a better design. However, if the game has several special situations in 
each room, then this state-machine design is quite appropriate. 



7 - Iterators and the Generic for
In this chapter, we cover how to write iterators for the generic for. We start with simple iterators, 
then we learn how to use all the power of the generic for to write more efficient iterators. 

7.1 - Iterators and Closures
An iterator is any construction that allows you to iterate over the elements of a collection. In Lua, 
we typically represent iterators by functions: Each time we call that function, it returns a "next" 
element from the collection. 

Any iterator needs to keep some state between successive calls, so that it knows where it is and how 
to proceed from there. Closures provide an excellent mechanism for that task. Remember that a 
closure is a function that accesses one or more local variables from its enclosing function. Those 
variables keep their values across successive calls to the closure, allowing the closure to remember 
where it is along a traversal. Of course, to create a new closure we must also create its external local 
variables. Therefore, a closure construction typically involves two functions: the closure itself; and 
a factory, the function that creates the closure. 

As a simple example, let us write a simple iterator for a list. Unlike ipairs, this iterator does not 
return the index of each element, only the value: 
    function list_iter (t)
      local i = 0
      local n = table.getn(t)
      return function ()
               i = i + 1
               if i <= n then return t[i] end
             end
    end

In this example, list_iter is the factory. Each time we call it, it creates a new closure (the 
iterator itself). That closure keeps its state in its external variables (t, i, and n) so that, each time 
we call it, it returns a next value from the list t. When there are no more values in the list, the 
iterator returns nil. 
We can use such iterator with a while: 
    t = {10, 20, 30}
    iter = list_iter(t)    -- creates the iterator
    while true do
      local element = iter()   -- calls the iterator
      if element == nil then break end
      print(element)
    end

However, it is easier to use the generic for. After all, it was designed for that kind of iteration: 
    t = {10, 20, 30}
    for element in list_iter(t) do
      print(element)
    end

The generic for does all the bookkeeping from an iteration loop: It calls the iterator factory; keeps 
the iterator function internally, so we do not need the iter variable; calls the iterator at each new 
iteration; and stops the loop when the iterator returns nil. (Later we will see that the generic for 
actually does more than that.) 



As a more advanced example, we will write an iterator to traverse all the words from the current 
input file. To do this traversal, we need to keep two values: the current line and where we are in that 
line. With this data, we can always generate the next word. To keep it, we use two external local 
variables, line and pos: 
    function allwords ()
      local line = io.read()  -- current line
      local pos = 1           -- current position in the line
      return function ()      -- iterator function
        while line do         -- repeat while there are lines
          local s, e = string.find(line, "%w+", pos)
          if s then           -- found a word?
            pos = e + 1       -- next position is after this word
            return string.sub(line, s, e)     -- return the word
          else
            line = io.read()  -- word not found; try next line
            pos = 1           -- restart from first position
          end
        end
        return nil            -- no more lines: end of traversal
      end
    end

The main part of the iterator function is the call to string.find. This call searches for a word in 
the current line, starting at the current position. It describes a "word" using the pattern '%w+', which 
matches one or more alphanumeric characters. If it finds the word, the function updates the current 
position to the first character after the word and returns that word. (The string.sub call extracts 
a substring from line between the given positions). Otherwise, the iterator reads a new line and 
repeats the search. If there are no more lines, it returns nil to signal the end of the iteration. 

Despite its complexity, the use of allwords is straightforward: 
    for word in allwords() do
      print(word)
    end

This is a common situation with iterators: They may be difficult to write, but are easy to use. This is 
not a big problem; more often than not, end users programming in Lua do not define iterators, but 
only use those provided by the application. 

7.2 - The Semantics of the Generic for
One drawback of those previous iterators is that we need to create a new closure for each new loop. 
For most situations, this is not a real problem. For instance, in the allwords iterator, the cost of 
creating one single closure is negligible compared to the cost of reading a whole file. However, in a 
few situations this overhead can be undesirable. In such cases, we can use the generic for itself to 
keep the iteration state. 

We saw that the generic for keeps the iterator function internally, during the loop. Actually, it keeps 
three values: The iterator function, an invariant state, and a control variable. Let us see the details 
now. 

The syntax for the generic for is as follows: 
    for <var-list> in <exp-list> do
      <body>
    end



where <var-list> is a list of one or more variable names, separated by commas, and <exp-
list> is a list of one or more expressions, also separated by commas. More often than not, the 
expression list has only one element, a call to an iterator factory. For instance, in the code 
    for k, v in pairs(t) do
      print(k, v)
    end

the list of variables is k, v; the list of expressions has the single element pairs(t). Often the 
list of variables has only one variable too, as in 
    for line in io.lines() do
      io.write(line, '\n')
    end

We call the first variable in the list the control variable. Its value is never nil during the loop, 
because when it becomes nil the loop ends. 

The first thing the for does is to evaluate the expressions after the in. These expressions should 
result in the three values kept by the for: the iterator function, the invariant state, and the initial 
value for the control variable. Like in a multiple assignment, only the last (or the only) element of 
the list can result in more than one value; and the number of values is adjusted to three, extra values 
being discarded or nils added as needed. (When we use simple iterators, the factory returns only the 
iterator function, so the invariant state and the control variable get nil.) 
After this initialization step, the for calls the iterator function with two arguments: the invariant 
state and the control variable. (Notice that, for the for structure, the invariant state has no meaning 
at all. It only gets this value from the initialization step and passes it when it calls the iterator 
function.) Then the for assigns the values returned by the iterator function to variables declared by 
its variable list. If the first value returned (the one assigned to the control variable) is nil, the loop 
terminates. Otherwise, the for executes its body and calls the iteration function again, repeating the 
process. 

More precisely, a construction like 
    for var_1, ..., var_n in explist do block end

is equivalent to the following code: 
    do
      local _f, _s, _var = explist
      while true do
        local var_1, ... , var_n = _f(_s, _var)
        _var = var_1
        if _var == nil then break end
        block
      end
    end

So, if our iterator function is f, the invariant state is s, and the initial value for the control variable is 
a0, the control variable will loop over the values a1 = f(s, a0), a2 = f(s, a1), and so on, until ai is nil. 
If the for has other variables, they simply get the extra values returned by each call to f. 

7.3 - Stateless Iterators
As the name implies, a stateless iterator is an iterator that does not keep any state by itself. 
Therefore, we may use the same stateless iterator in multiple loops, avoiding the cost of creating 



new closures. 

On each iteration, the for loop calls its iterator function with two arguments: the invariant state and 
the control variable. A stateless iterator generates the next element for the iteration using only these 
two arguments. A typical example of this kind of iterator is ipairs, which iterates over all 
elements in an array, as illustrated next: 
    a = {"one", "two", "three"}
    for i, v in ipairs(a) do
      print(i, v)
    end

The state of the iteration is the table being traversed (the invariant state, which does not change 
during the loop), plus the current index (the control variable). Both ipairs and the iterator it 
returns are quite simple; we could write them in Lua as follows: 
    function iter (a, i)
      i = i + 1
      local v = a[i]
      if v then
        return i, v
      end
    end
    
    function ipairs (a)
      return iter, a, 0
    end

When Lua calls ipairs(a) in a for loop, it gets three values: the iter function as the iterator, a 
as the invariant state, and zero as the initial value for the control variable. Then, Lua calls 
iter(a, 0), which results in 1, a[1] (unless a[1] is already nil). In the second iteration, it 
calls iter(a, 1), which results in 2, a[2], and so on, until the first nil element. 

The pairs function, which iterates over all elements in a table, is similar, except that the iterator 
function is the next function, which is a primitive function in Lua: 
    function pairs (t)
      return next, t, nil
    end

The call next(t, k), where k is a key of the table t, returns a next key in the table, in an 
arbitrary order. (It returns also the value associated with that key, as a second return value.) The call 
next(t, nil) returns a first pair. When there are no more pairs, next returns nil. 

Some people prefer to use next directly, without calling pairs: 
    for k, v in next, t do
      ...
    end

Remember that the expression list of the for loop is adjusted to three results, so Lua gets next, t, 
and nil, exactly what it gets when it calls pairs(t). 

7.4 - Iterators with Complex State
Frequently, an iterator needs to keep more state than fits into a single invariant state and a control 
variable. The simplest solution is to use closures. An alternative solution is to pack all it needs into a 



table and use this table as the invariant state for the iteration. Using a table, an iterator can keep as 
much data as it needs along the loop. Moreover, it can change that data as it goes. Although the state 
is always the same table (and therefore invariant), the table contents change along the loop. Because 
such iterators have all their data in the state, they typically discard the second argument provided by 
the generic for (the iterator variable). 

As an example of this technique, we will rewrite the iterator allwords, which traverses all the 
words from the current input file. This time, we will keep its state using a table with two fields, 
line and pos. 

The function that starts the iteration is simple. It must return the iterator function and the initial 
state: 
    local iterator   -- to be defined later
    
    function allwords ()
      local state = {line = io.read(), pos = 1}
      return iterator, state
    end

The iterator function does the real work: 
    function iterator (state)
      while state.line do        -- repeat while there are lines
        -- search for next word
        local s, e = string.find(state.line, "%w+", state.pos)
        if s then                -- found a word?
          -- update next position (after this word)
          state.pos = e + 1
          return string.sub(state.line, s, e)
        else    -- word not found
          state.line = io.read() -- try next line...
          state.pos = 1          -- ... from first position
        end
      end
      return nil                 -- no more lines: end loop
    end

Whenever it is possible, you should try to write stateless iterators, those that keep all their state in 
the for variables. With them, you do not create new objects when you start a loop. If you cannot fit 
your iteration into that model, then you should try closures. Besides being more elegant, typically a 
closure is more efficient than an iterator using tables: First, it is cheaper to create a closure than a 
table; second, access to upvalues is faster than access to table fields. Later we will see yet another 
way to write iterators, with coroutines. This is the most powerful solution, but a little more 
expensive. 

7.5 - True Iterators
The name "iterator" is a little misleading, because our iterators do not iterate: What iterates is the 
for loop. Iterators only provide the successive values for the iteration. Maybe a better name would 
be "generator", but "iterator" is already well established in other languages, such as Java. 

However, there is another way to build iterators wherein iterators actually do the iteration. When we 
use such iterators we do not write a loop; instead, we simply call the iterator with an argument that 
describes what the iterator must do at each iteration. More specifically, the iterator receives as 
argument a function that it calls inside its loop. 



As a concrete example, let us rewrite once more the allwords iterator using this style: 
    function allwords (f)
      -- repeat for each line in the file
      for l in io.lines() do
        -- repeat for each word in the line
        for w in string.gfind(l, "%w+") do
          -- call the function
          f(w)
        end
      end
    end

To use such iterator, we must supply the loop body as a function. If we only want to print each 
word, we simply use print: 
    allwords(print)

More often, we use an anonymous function as the body. For instance, the next code fragment counts 
how many times the word "hello" appears in the input file: 
    local count = 0
    allwords(function (w)
      if w == "hello" then count = count + 1 end
    end)
    print(count)

The same task, written with the previous iterator style, is not very different: 
    local count = 0
    for w in allwords() do
      if w == "hello" then count = count + 1 end
    end
    print(count)

True iterators were popular in older versions of Lua, when the language did not have the for 
statement. How do they compare with generator-style iterators? Both styles have approximately the 
same overhead: one function call per iteration. On the one hand, it is easier to write the iterator with 
this second style (although we can recover this easiness with coroutines). On the other hand, the 
generator style is more flexible. First, it allows two or more parallel iterations. (For instance, 
consider the problem of iterating over two files comparing them word by word.) Second, it allows 
the use of break and return inside the iterator body. (With a true iterator, a return returns from the 
anonymous function, not from the function doing the iteration.) 

8 - Compilation, Execution, and Errors
Although we refer to Lua as an interpreted language, Lua always precompiles source code to an 
intermediate form before running it. (This is not a big deal: Most interpreted languages do the 
same.) The presence of a compilation phase may sound out of place in an interpreted language like 
Lua. However, the distinguishing feature of interpreted languages is not that they are not compiled, 
but that any compiler is part of the language runtime and that, therefore, it is possible (and easy) to 
execute code generated on the fly. We may say that the presence of a function like dofile is what 
allows Lua to be called an interpreted language. 

Previously, we introduced dofile as a kind of primitive operation to run chunks of Lua code. The 
dofile function is actually an auxiliary function; loadfile does the hard work. Like dofile, 



loadfile also loads a Lua chunk from a file, but it does not run the chunk. Instead, it only 
compiles the chunk and returns the compiled chunk as a function. Moreover, unlike dofile, 
loadfile does not raise errors, but instead returns error codes, so that we can handle the error. 
We could define dofile as follows: 
    function dofile (filename)
      local f = assert(loadfile(filename))
      return f()
    end

Note the use of assert to raise an error if loadfile fails. 

For simple tasks, dofile is handy, as it does the whole job in one call. However, loadfile is 
more flexible. In case of errors, loadfile returns nil plus the error message, which allows us to 
handle the error in customized ways. Moreover, if we need to run a file several times, we can call 
loadfile once and call its result several times. This is much cheaper than several calls to 
dofile, because the program compiles the file only once. 

The loadstring function is similar to loadfile, except that it reads its chunk from a string, 
not from a file. For instance, after the code 
    f = loadstring("i = i + 1")

f will be a function that, when invoked, executes i = i + 1: 
    i = 0
    f(); print(i)   --> 1
    f(); print(i)   --> 2

The loadstring function is powerful; it must be used with care. It is also an expensive function 
(when compared to its alternatives) and may result in incomprehensible code. Before you use it, 
make sure that there is no simpler way to solve the problem at hand. 

Lua treats any independent chunk as the body of an anonymous function. For instance, for the 
chunk "a = 1", loadstring returns the equivalent of 
    function () a = 1 end

Like any other function, chunks can declare local variables and return values: 
    f = loadstring("local a = 10; return a + 20")
    print(f())          --> 30

Both loadstring and loadfile never raise errors. In case of any kind of error, both functions 
return nil plus an error message: 
    print(loadstring("i i"))
      --> nil     [string "i i"]:1: `=' expected near `i'

Moreover, both functions never have any kind of side effect. They only compile the chunk to an 
internal representation and return the result, as an anonymous function. A common mistake is to 
assume that loadfile (or loadstring) defines functions. In Lua, function definitions are 
assignments; as such, they are made at runtime, not at compile time. For instance, suppose we have 
a file foo.lua like this: 
    -- file `foo.lua'
    function foo (x)
      print(x)
    end



We then run the command 
    f = loadfile("foo.lua")

After this command, foo is compiled, but it is not defined yet. To define it, you must run the 
chunk: 
    f()           -- defines `foo'
    foo("ok")     --> ok

If you want to do a quick-and-dirty dostring (i.e., to load and run a chunk) you may call the 
result from loadstring directly: 
    loadstring(s)()

However, if there is any syntax error, loadstring will return nil and the final error message will 
be an "attempt to call a nil value". For clearer error messages, use assert: 
    assert(loadstring(s))()

Usually, it does not make sense to use loadstring on a literal string. For instance, the code 
    f = loadstring("i = i + 1")

is roughly equivalent to 
    f = function () i = i + 1 end

but the second code is much faster, because it is compiled only once, when the chunk is compiled. 
In the first code, each call to loadstring involves a new compilation. However, the two codes 
are not completely equivalent, because loadstring does not compile with lexical scoping. To 
see the difference, let us change the previous examples a little: 
    local i = 0
    f = loadstring("i = i + 1")
    g = function () i = i + 1 end

The g function manipulates the local i, as expected, but f manipulates a global i, because 
loadstring always compiles its strings in a global environment. 

The most typical use of loadstring is to run external code, that is, pieces of code that come 
from outside your program. For instance, you may want to plot a function defined by the user; the 
user enters the function code and then you use loadstring to evaluate it. Note that 
loadstring expects a chunk, that is, statements. If you want to evaluate an expression, you must 
prefix it with return, so that you get a statement that returns the value of the given expression. See 
the example: 
    print "enter your expression:"
    local l = io.read()
    local func = assert(loadstring("return " .. l))
    print("the value of your expression is " .. func())

The function returned by loadstring is a regular function, so you can call it several times: 
    print "enter function to be plotted (with variable `x'):"
    local l = io.read()
    local f = assert(loadstring("return " .. l))
    for i=1,20 do
      x = i   -- global `x' (to be visible from the chunk)
      print(string.rep("*", f()))



    end

In a production-quality program that needs to run external code, you should handle any errors 
reported by loadstring. Moreover, if the code cannot be trusted, you may want to run the new 
chunk in a protected environment, to avoid unpleasant side effects when running the code. 

8.1 - The require Function
Lua offers a higher-level function to load and run libraries, called require. Roughly, require 
does the same job as dofile, but with two important differences. First, require searches for the 
file in a path; second, require controls whether a file has already been run to avoid duplicating 
the work. Because of these features, require is the preferred function in Lua for loading libraries. 

The path used by require is a little different from typical paths. Most programs use paths as a list 
of directories wherein to search for a given file. However, ANSI C (the abstract platform where Lua 
runs) does not have the concept of directories. Therefore, the path used by require is a list of 
patterns, each of them specifying an alternative way to transform a virtual file name (the argument 
to require) into a real file name. More specifically, each component in the path is a file name 
containing optional interrogation marks. For each component, require replaces each `?´ by the 
virtual file name and checks whether there is a file with that name; if not, it goes to the next 
component. The components in a path are separated by semicolons (a character seldom used for file 
names in most operating systems). For instance, if the path is 
    ?;?.lua;c:\windows\?;/usr/local/lua/?/?.lua

then the call require"lili" will try to open the following files: 
    lili
    lili.lua
    c:\windows\lili
    /usr/local/lua/lili/lili.lua

The only things that require fixes is the semicolon (as the component separator) and the 
interrogation mark; everything else (such as directory separators or file extensions) is defined in the 
path. 

To determine its path, require first checks the global variable LUA_PATH. If the value of 
LUA_PATH is a string, that string is the path. Otherwise, require checks the environment 
variable LUA_PATH. Finally, if both checks fail, require uses a fixed path (typically 
"?;?.lua", although it is easy to change that when you compile Lua). 

The other main job of require is to avoid loading the same file twice. For that purpose, it keeps a 
table with the names of all loaded files. If a required file is already in the table, require simply 
returns. The table keeps the virtual names of the loaded files, not their real names. Therefore, if you 
load the same file with two different virtual names, it will be loaded twice. For instance, the 
command require"foo" followed by require"foo.lua", with a path like "?;?.lua", 
will load the file foo.lua twice. You can access this control table through the global variable 
_LOADED. Using this table, you can check which files have been loaded; you can also fool 
require into running a file twice. For instance, after a successful require"foo", 
_LOADED["foo"] will not be nil. If you then assign nil to _LOADED["foo"], a subsequent 
require"foo" will run the file again. 

A component does not need to have interrogation marks; it can be a fixed file name, such as the last 



component in the following path: 
    ?;?.lua;/usr/local/default.lua

In this case, whenever require cannot find another option, it will run this fixed file. (Of course, it 
only makes sense to have a fixed component as the last component in a path.) Before require 
runs a chunk, it defines a global variable _REQUIREDNAME containing the virtual name of the file 
being required. We can use these facilities to extend the functionality of require. In an extreme 
example, we may set the path to something like "/usr/local/lua/newrequire.lua", so 
that every call to require runs newrequire.lua, which can then use the value of 
_REQUIREDNAME to actually load the required file. 

8.2 - C Packages
Because it is easy to interface Lua with C, it is also easy to write packages for Lua in C. Unlike 
packages written in Lua, however, C packages need to be loaded and linked with an application 
before use. In most popular systems, the easiest way to do that is with a dynamic linking facility. 
However, this facility is not part of the ANSI C specification; that is, there is no portable way to 
implement it. 

Usually, Lua does not include any facility that cannot be implemented in ANSI C. However, 
dynamic linking is different. We can view it as the mother of all other facilities: Once we have it, 
we can dynamically load any other facility that is not in Lua. Therefore, in this particular case, Lua 
breaks its compatibility rules and implements a dynamic linking facility for several platforms, using 
conditional code. The standard implementation offers this support for Windows (DLL), Linux, 
FreeBSD, Solaris, and some other Unix implementations. It should not be difficult to extend this 
facility to other platforms; check your distribution. (To check it, run print(loadlib()) from 
the Lua prompt and see the result. If it complains about bad arguments, then you have dynamic 
linking facility. Otherwise, the error message indicates that this facility is not supported or not 
installed.) 

Lua provides all the functionality of dynamic linking in a single function, called loadlib. Its has 
two string arguments: the complete path of the library and the name of an initialization function. So, 
a typical call to it looks like the next fragment: 
    local path = "/usr/local/lua/lib/libluasocket.so"
    local f = loadlib(path, "luaopen_socket")

The loadlib function loads the given library and links Lua to it. However, it does not open the 
library (that is, it does not call the initialization function); instead, it returns the initialization 
function as a Lua function, so that we can call it directly from Lua. If there is any error loading the 
library or finding the initialization function, loadlib returns nil plus an error message. We can 
improve our previous fragment so that it checks for errors and calls the initialization function: 
    local path = "/usr/local/lua/lib/libluasocket.so"
    -- or path = "C:\\windows\\luasocket.dll"
    local f = assert(loadlib(path, "luaopen_socket"))
    f()  -- actually open the library

Typically, we could expect a library distribution to include a stub file similar to that previous code 
fragment. Then, to install the library, we put the actual binary shared library anywhere, edit the stub 
to reflect the real path, and then add the stub file in a directory in our LUA_PATH. With this setting, 
we can use the regular require function to open the C library. 



8.3 - Errors
Errare humanum est. Therefore, we must handle errors the best way we can. Because Lua is an 
extension language, frequently embedded in an application, it cannot simply crash or exit when an 
error happens. Instead, whenever an error occurs, Lua ends the current chunk and returns to the 
application. 

Any unexpected condition that Lua encounters raises an error. Errors occur when you (that is, your 
program) try to add values that are not numbers, to call values that are not functions, to index values 
that are not tables, and so on. (You can modify this behavior using metatables, as we will see later.) 
You can also explicitly raise an error calling the error function; its argument is the error message. 
Usually, that function is the appropriate way to handle errors in your code: 
    print "enter a number:"
    n = io.read("*number")
    if not n then error("invalid input") end

Such combination of if not ... then error end is so common that Lua has a built-in 
function just for that job, called assert: 
    print "enter a number:"
    n = assert(io.read("*number"), "invalid input")

The assert function checks whether its first argument is not false and simply returns that 
argument; if the argument is false (that is, false or nil), assert raises an error. Its second 
argument, the message, is optional, so that if you do not want to say anything in the error message, 
you do not have to. Beware, however, that assert is a regular function. As such, Lua always 
evaluates its arguments before calling the function. Therefore, if you have something like 
    n = io.read()
    assert(tonumber(n),
           "invalid input: " .. n .. " is not a number")

Lua will always do the concatenation, even when n is a number. It may be wiser to use an explicit 
test in such cases. 

When a function finds an unexpected situation (an exception), it can assume two basic behaviors: It 
can return an error code (typically nil) or it can raise an error, calling the error function. There are 
no fixed rules for choosing between those two options, but we can provide a general guideline: An 
exception that is easily avoided should raise an error; otherwise, it should return an error code. 

For instance, let us consider the sin function. How should it behave when called on a table? 
Suppose it returns an error code. If we need to check for errors, we would have to write something 
like 
    local res = math.sin(x)
    if not res then     -- error
      ...

However, we could as easily check this exception before calling the function: 
    if not tonumber(x) then     -- error: x is not a number
      ...

Usually, however, we check neither the argument nor the result of a call to sin; if the argument is 
not a number, it means probably something wrong in our program. In such situations, to stop the 



computation and to issue an error message is the simplest and most practical way to handle the 
exception. 

On the other hand, let us consider the io.open function, which opens a file. How should it behave 
when called to read a file that does not exist? In this case, there is no simple way to check for the 
exception before calling the function. In many systems, the only way of knowing whether a file 
exists is to try to open it. Therefore, if io.open cannot open a file because of an external reason 
(such as "file does not exist" or "permission denied"), it returns nil, plus a string 
with the error message. In this way, you have a chance to handle the situation in an appropriate way, 
for instance by asking the user for another file name: 
    local file, msg
    repeat
      print "enter a file name:"
      local name = io.read()
      if not name then return end   -- no input
      file, msg = io.open(name, "r")
      if not file then print(msg) end
    until file

If you do not want to handle such situations, but still want to play safe, you simply use assert to 
guard the operation: 
    file = assert(io.open(name, "r"))

This is a typical Lua idiom: If io.open fails, assert will raise an error. 
    file = assert(io.open("no-file", "r"))
      --> stdin:1: no-file: No such file or directory

Notice how the error message, which is the second result from io.open, goes as the second 
argument to assert. 

8.4 - Error Handling and Exceptions
For many applications, you do not need to do any error handling in Lua. Usually, the application 
program does this handling. All Lua activities start from a call by the application, usually asking 
Lua to run a chunk. If there is any error, this call returns an error code and the application can take 
appropriate actions. In the case of the stand-alone interpreter, its main loop just prints the error 
message and continues showing the prompt and running the commands. 

If you need to handle errors in Lua, you should use the pcall function (protected call) to 
encapsulate your code. 

Suppose you want to run a piece of Lua code and to catch any error raised while running that code. 
Your first step is to encapsulate that piece of code in a function; let us call it foo: 
    function foo ()
        ...
      if unexpected_condition then error() end
        ...
      print(a[i])    -- potential error: `a' may not be a table
        ...
    end

Then, you call foo with pcall: 
    if pcall(foo) then



      -- no errors while running `foo'
      ...
    else
      -- `foo' raised an error: take appropriate actions
      ...
    end

Of course, you can call pcall with an anonymous function: 
    if pcall(function () ... end) then ...
    else ...

The pcall function calls its first argument in protected mode, so that it catches any errors while 
the function is running. If there are no errors, pcall returns true, plus any values returned by the 
call. Otherwise, it returns false, plus the error message. 

Despite its name, the error message does not have to be a string. Any Lua value that you pass to 
error will be returned by pcall: 
    local status, err = pcall(function () error({code=121}) end)
    print(err.code)  -->  121

These mechanisms provide all we need to do exception handling in Lua. We throw an exception 
with error and catch it with pcall. The error message identifies the kind or error. 

8.5 - Error Messages and Tracebacks
Although you can use a value of any type as an error message, usually error messages are strings 
describing what went wrong. When there is an internal error (such as an attempt to index a non-
table value), Lua generates the error message; otherwise, the error message is the value passed to 
the error function. In any case, Lua tries to add some information about the location where the 
error happened: 
    local status, err = pcall(function () a = 'a'+1 end)
    print(err)
     --> stdin:1: attempt to perform arithmetic on a string value
    
    local status, err = pcall(function () error("my error") end)
    print(err)
     --> stdin:1: my error

The location information gives the file name (stdin, in the example) plus the line number (1, in 
the example). 

The error function has an additional second parameter, which gives the level where it should 
report the error; with it, you can blame someone else for the error. For instance, suppose you write a 
function and its first task is to check whether it was called correctly: 
    function foo (str)
      if type(str) ~= "string" then
        error("string expected")
      end
      ...
    end

Then, someone calls your function with a wrong argument: 
    foo({x=1})



Lua points its finger to your function---after all, it was foo that called error---and not to the real 
culprit, the caller. To correct that, you inform error that the error you are reporting occurred on 
level 2 in the calling hierarchy (level 1 is your own function): 
    function foo (str)
      if type(str) ~= "string" then
        error("string expected", 2)
      end
      ...
    end

Frequently, when an error happens, we want more debug information than only the location where 
the error occurred. At least, we want a traceback, showing the complete stack of calls leading to the 
error. When pcall returns its error message, it destroys part of the stack (the part that went from it 
to the error point). Consequently, if we want a traceback, we must build it before pcall returns. To 
do that, Lua provides the xpcall function. Besides the function to be called, it receives a second 
argument, an error handler function. In case of errors, Lua calls that error handler before the stack 
unwinds, so that it can use the debug library to gather any extra information it wants about the error. 
Two common error handlers are debug.debug, which gives you a Lua prompt so that you can 
inspect by yourself what was going on when the error happened (later we will see more about that, 
when we discuss the debug library); and debug.traceback, which builds an extended error 
message with a traceback. The latter is the function that the stand-alone interpreter uses to build its 
error messages. You also can call debug.traceback at any moment to get a traceback of the 
current execution: 
    print(debug.traceback())

9 - Coroutines
A coroutine is similar to a thread (in the sense of multithreading): a line of execution, with its own 
stack, its own local variables, and its own instruction pointer; but sharing global variables and 
mostly anything else with other coroutines. The main difference between threads and coroutines is 
that, conceptually (or literally, in a multiprocessor machine), a program with threads runs several 
threads concurrently. Coroutines, on the other hand, are collaborative: A program with coroutines is, 
at any given time, running only one of its coroutines and this running coroutine only suspends its 
execution when it explicitly requests to be suspended. 

Coroutine is a powerful concept. As such, several of its main uses are complex. Do not worry if you 
do not understand some of the examples in this chapter on your first reading. You can read the rest 
of the book and come back here later. But please come back. It will be time well spent. 

9.1 - Coroutine Basics
Lua offers all its coroutine functions packed in the coroutine table. The create function 
creates new coroutines. It has a single argument, a function with the code that the coroutine will 
run. It returns a value of type thread, which represents the new coroutine. Quite often, the 
argument to create is an anonymous function, like here: 
    co = coroutine.create(function ()
           print("hi")
         end)
    
    print(co)   --> thread: 0x8071d98



A coroutine can be in one of three different states: suspended, running, and dead. When we create a 
coroutine, it starts in the suspended state. That means that a coroutine does not run its body 
automatically when we create it. We can check the state of a coroutine with the status function: 
    print(coroutine.status(co))   --> suspended

The function coroutine.resume (re)starts the execution of a coroutine, changing its state from 
suspended to running: 
    coroutine.resume(co)   --> hi

In this example, the coroutine body simply prints "hi" and terminates, leaving the coroutine in the 
dead state, from which it cannot return: 
    print(coroutine.status(co))   --> dead

Until now, coroutines look like nothing more than a complicated way to call functions. The real 
power of coroutines stems from the yield function, which allows a running coroutine to suspend 
its execution so that it can be resumed later. Let us see a simple example: 
    co = coroutine.create(function ()
           for i=1,10 do
             print("co", i)
             coroutine.yield()
           end
         end)

Now, when we resume this coroutine, it starts its execution and runs until the first yield: 
    coroutine.resume(co)    --> co   1

If we check its status, we can see that the coroutine is suspended and therefore can be resumed 
again: 
    print(coroutine.status(co))   --> suspended

From the coroutine's point of view, all activity that happens while it is suspended is happening 
inside its call to yield. When we resume the coroutine, this call to yield finally returns and the 
coroutine continues its execution until the next yield or until its end: 
    coroutine.resume(co)    --> co   2
    coroutine.resume(co)    --> co   3
    ...
    coroutine.resume(co)    --> co   10
    coroutine.resume(co)    -- prints nothing

During the last call to resume, the coroutine body finished the loop and then returned, so the 
coroutine is dead now. If we try to resume it again, resume returns false plus an error message: 
    print(coroutine.resume(co))
    --> false   cannot resume dead coroutine

Note that resume runs in protected mode. Therefore, if there is any error inside a coroutine, Lua 
will not show the error message, but instead will return it to the resume call. 

A useful facility in Lua is that a pair resume-yield can exchange data between them. The first 
resume, which has no corresponding yield waiting for it, passes its extra arguments as 
arguments to the coroutine main function: 
    co = coroutine.create(function (a,b,c)



           print("co", a,b,c)
         end)
    coroutine.resume(co, 1, 2, 3)    --> co  1  2  3

A call to resume returns, after the true that signals no errors, any arguments passed to the 
corresponding yield: 
    co = coroutine.create(function (a,b)
           coroutine.yield(a + b, a - b)
         end)
    print(coroutine.resume(co, 20, 10))  --> true  30  10

Symmetrically, yield returns any extra arguments passed to the corresponding resume: 
    co = coroutine.create (function ()
           print("co", coroutine.yield())
         end)
    coroutine.resume(co)
    coroutine.resume(co, 4, 5)     --> co  4  5

Finally, when a coroutine ends, any values returned by its main function go to the corresponding 
resume: 
    co = coroutine.create(function ()
           return 6, 7
         end)
    print(coroutine.resume(co))   --> true  6  7

We seldom use all these facilities in the same coroutine, but all of them have their uses. 

For those that already know something about coroutines, it is important to clarify some concepts 
before we go on. Lua offers what I call asymmetric coroutines. That means that it has a function to 
suspend the execution of a coroutine and a different function to resume a suspended coroutine. 
Some other languages offer symmetric coroutines, where there is only one function to transfer 
control from any coroutine to another. 

Some people call asymmetric coroutine semi-coroutines (because they are not symmetrical, they are 
not really co). However, other people use the same term semi-coroutine to denote a restricted 
implementation of coroutines, where a coroutine can only suspend its execution when it is not 
inside any auxiliary function, that is, when it has no pending calls in its control stack. In other 
words, only the main body of such semi-coroutines can yield. A generator in Python is an example 
of this meaning of semi-coroutines. 

Unlike the difference between symmetric and asymmetric coroutines, the difference between 
coroutines and generators (as presented in Python) is a deep one; generators are simply not 
powerful enough to implement several interesting constructions that we can write with true 
coroutines. Lua offers true, asymmetric coroutines. Those that prefer symmetric coroutines can 
implement them on top of the asymmetric facilities of Lua. It is an easy task. (Basically, each 
transfer does a yield followed by a resume.) 

9.2 - Pipes and Filters
One of the most paradigmatic examples of coroutines is in the producer-consumer problem. Let us 
suppose that we have a function that continually produces values (e.g., reading them from a file) 
and another function that continually consumes these values (e.g., writing them to another file). 
Typically, these two functions look like this: 



    function producer ()
      while true do
        local x = io.read()     -- produce new value
        send(x)                 -- send to consumer
      end
    end
    
    function consumer ()
      while true do
        local x = receive()        -- receive from producer
        io.write(x, "\n")          -- consume new value
      end
    end

(In that implementation, both the producer and the consumer run forever. It is an easy task to 
change them to stop when there is no more data to be handled.) The problem here is how to match 
send with receive. It is a typical case of a who-has-the-main-loop problem. Both the producer 
and the consumer are active, both have their own main loops, and both assume that the other is a 
callable service. For this particular example, it is easy to change the structure of one of the 
functions, unrolling its loop and making it a passive agent. However, this change of structure may 
be far from easy in other real scenarios. 

Coroutines provide an ideal tool to match producers and consumers, because a resume-yield pair 
turns upside-down the typical relationship between caller and callee. When a coroutine calls 
yield, it does not enter into a new function; instead, it returns a pending call (to resume). 
Similarly, a call to resume does not start a new function, but returns a call to yield. This 
property is exactly what we need to match a send with a receive in such a way that each one 
acts as if it were the master and the other the slave. So, receive resumes the producer so that it 
can produce a new value; and send yields the new value back to the consumer: 
    function receive ()
      local status, value = coroutine.resume(producer)
      return value
    end
    
    function send (x)
      coroutine.yield(x)
    end

Of course, the producer must now be a coroutine: 
    producer = coroutine.create(
      function ()
        while true do
        local x = io.read()     -- produce new value
          send(x)
        end
      end)

In this design, the program starts calling the consumer. When the consumer needs an item, it 
resumes the producer, which runs until it has an item to give to the consumer, and then stops until 
the consumer restarts it again. Therefore, we have what we call a consumer-driven design. 

We can extend this design with filters, which are tasks that sit between the producer and the 
consumer doing some kind of transformation in the data. A filter is a consumer and a producer at the 
same time, so it resumes a producer to get new values and yields the transformed values to a 
consumer. As a trivial example, we can add to our previous code a filter that inserts a line number at 
the beginning of each line. The complete code would be like this: 
    function receive (prod)



      local status, value = coroutine.resume(prod)
      return value
    end
    
    function send (x)
      coroutine.yield(x)
    end
    
    function producer ()
      return coroutine.create(function ()
        while true do
          local x = io.read()     -- produce new value
          send(x)
        end
      end)
    end
    
    function filter (prod)
      return coroutine.create(function ()
        local line = 1
        while true do
          local x = receive(prod)   -- get new value
          x = string.format("%5d %s", line, x)
          send(x)      -- send it to consumer
          line = line + 1
        end
      end)
    end
    
    function consumer (prod)
      while true do
        local x = receive(prod)   -- get new value
        io.write(x, "\n")          -- consume new value
      end
    end

The final bit simply creates the components it needs, connects them, and starts the final consumer: 
    p = producer()
    f = filter(p)
    consumer(f)

Or better yet: 
    consumer(filter(producer()))

If you thought about Unix pipes after reading the previous example, you are not alone. After all, 
coroutines are a kind of (non-preemptive) multithreading. While in pipes each task runs in a 
separate process, with coroutines each task runs in a separate coroutine. Pipes provide a buffer 
between the writer (producer) and the reader (consumer) so there is some freedom in their relative 
speeds. This is important in the context of pipes, because the cost of switching between processes is 
high. With coroutines, the cost of switching between tasks is much smaller (roughly the same cost 
of a function call), so the writer and the reader can go hand in hand. 

9.3 - Coroutines as Iterators
We can see loop iterators as a quite specific example of the producer-consumer pattern. An iterator 
produces items to be consumed by the loop body. Therefore, it seems appropriate to use coroutines 
to write iterators. Actually, coroutines provide a powerful tool for this task. Again, the key feature is 
their ability to turn upside-down the relationship between caller and callee. With this feature, we 



can write iterators without worrying about how to keep state between successive calls to the iterator. 

To illustrate this kind of use, let us write an iterator to traverse all permutations of a given array. It is 
not an easy task to write directly such iterator, but it is not so difficult to write a recursive function 
that generates all those permutations. The idea is simple: Put each array element in the last position, 
in turn, and recursively generate all permutations of the remaining elements. The code is as follows: 
    function permgen (a, n)
      if n == 0 then
        printResult(a)
      else
        for i=1,n do
    
          -- put i-th element as the last one
          a[n], a[i] = a[i], a[n]
    
          -- generate all permutations of the other elements
          permgen(a, n - 1)
    
          -- restore i-th element
          a[n], a[i] = a[i], a[n]
    
        end
      end
    end

To see it working, we should define an appropriate printResult function and call permgen 
with proper arguments: 
    function printResult (a)
      for i,v in ipairs(a) do
        io.write(v, " ")
      end
      io.write("\n")
    end
    
    permgen ({1,2,3,4}, 4)

After we have the generator ready, it is an automatic task to convert it to an iterator. First, we 
change printResult to yield: 
    function permgen (a, n)
      if n == 0 then
        coroutine.yield(a)
      else
      ...

Then, we define a factory that arranges for the generator to run inside a coroutine, and then create 
the iterator function. The iterator simply resumes the coroutine to produce the next permutation: 
    function perm (a)
      local n = table.getn(a)
      local co = coroutine.create(function () permgen(a, n) end)
      return function ()   -- iterator
        local code, res = coroutine.resume(co)
        return res
      end
    end

With that machinery in place, it is trivial to iterate over all permutations of an array with a for 
statement: 
    for p in perm{"a", "b", "c"} do



      printResult(p)
    end
      --> b c a
      --> c b a
      --> c a b
      --> a c b
      --> b a c
      --> a b c

The perm function uses a common pattern in Lua, which packs a call to resume with its 
corresponding coroutine inside a function. This pattern is so common that Lua provides a special 
function for it: coroutine.wrap. Like create, wrap creates a new coroutine. Unlike 
create, wrap does not return the coroutine itself; instead, it returns a function that, when called, 
resumes the coroutine. Unlike the original resume, that function does not return an error code as 
its first result; instead, it raises the error in case of errors. Using wrap, we can write perm as 
follows: 
    function perm (a)
      local n = table.getn(a)
      return coroutine.wrap(function () permgen(a, n) end)
    end

Usually, coroutine.wrap is simpler to use than coroutine.create. It gives us exactly 
what we need from a coroutine: a function to resume it. However, it is also less flexible. There is no 
way to check the status of a coroutine created with wrap. Moreover, we cannot check for errors. 

9.4 - Non-Preemptive Multithreading
As we saw earlier, coroutines are a kind of collaborative multithreading. Each coroutine is 
equivalent to a thread. A pair yield-resume switches control from one thread to another. However, 
unlike "real" multithreading, coroutines are non preemptive. While a coroutine is running, it cannot 
be stopped from the outside. It only suspends execution when it explicitly requests so (through a 
call to yield). For several applications this is not a problem, quite the opposite. Programming is 
much easier in the absence of preemption. You do not need to be paranoid about synchronization 
bugs, because all synchronization among threads is explicit in the program. You only have to ensure 
that a coroutine only yields when it is outside a critical region. 

However, with non-preemptive multithreading, whenever any thread calls a blocking operation, the 
whole program blocks until the operation completes. For most applications, this is an unacceptable 
behavior, which leads many programmers to disregard coroutines as a real alternative to 
conventional multithreading. As we will see here, that problem has an interesting (and obvious, with 
hindsight) solution. 

Let us assume a typical multithreading situation: We want to download several remote files through 
HTTP. Of course, to download several remote files, we must know how to download one remote 
file. In this example, we will use the LuaSocket library, developed by Diego Nehab. To download a 
file, we must open a connection to its site, send a request to the file, receive the file (in blocks), and 
close the connection. In Lua, we can write this task as follows. First, we load the LuaSocket library: 
    require "luasocket"

Then, we define the host and the file we want to download. In this example, we will download the 
HTML 3.2 Reference Specification from the World Wide Web Consortium site: 
    host = "www.w3.org"



    file = "/TR/REC-html32.html"

Then, we open a TCP connection to port 80 (the standard port for HTTP connections) of that site: 
    c = assert(socket.connect(host, 80))

The operation returns a connection object, which we use to send the file request: 
    c:send("GET " .. file .. " HTTP/1.0\r\n\r\n")

The receive method always returns a string with what it read plus another string with the status 
of the operation. When the host closes the connection we break the receive loop. 

Finally, we close the connection: 
    c:close()

Now that we know how to download one file, let us return to the problem of downloading several 
files. The trivial approach is to download one at a time. However, this sequential approach, where 
we only start reading a file after finishing the previous one, is too slow. When reading a remote file, 
a program spends most of its time waiting for data to arrive. More specifically, it spends most of its 
time blocked in the call to receive. So, the program could run much faster if it downloaded all 
files simultaneously. Then, while a connection has no data available, the program can read from 
another connection. Clearly, coroutines offer a convenient way to structure those simultaneous 
downloads. We create a new thread for each download task. When a thread has no data available, it 
yields control to a simple dispatcher, which invokes another thread. 

To rewrite the program with coroutines, let us first rewrite the previous download code as a 
function: 
    function download (host, file)
      local c = assert(socket.connect(host, 80))
      local count = 0    -- counts number of bytes read
      c:send("GET " .. file .. " HTTP/1.0\r\n\r\n")
      while true do
        local s, status = receive(c)
        count = count + string.len(s)
        if status == "closed" then break end
      end
      c:close()
      print(file, count)
    end

Because we are not interested in the remote file contents, this function only counts the file size, 
instead of writing the file to the standard output. (With several threads reading several files, the 
output would intermix all files.) In this new code, we use an auxiliary function (receive) to 
receive data from the connection. In the sequential approach, its code would be like this: 
    function receive (connection)
      return connection:receive(2^10)
    end

For the concurrent implementation, this function must receive data without blocking. Instead, if 
there is not enough data available, it yields. The new code is like this: 
    function receive (connection)
      connection:timeout(0)   -- do not block
      local s, status = connection:receive(2^10)
      if status == "timeout" then
        coroutine.yield(connection)
      end



      return s, status
    end

The call to timeout(0) makes any operation over the connection a non-blocking operation. 
When the operation status is "timeout", it means that the operation returned without completion. 
In this case, the thread yields. The non-false argument passed to yield signals to the dispatcher 
that the thread is still performing its task. (Later we will see another version where the dispatcher 
needs the timed-out connection.) Notice that, even in case of a timeout, the connection returns what 
it read until the timeout, so receive always returns s to its caller. 

The next function ensures that each download runs in an individual thread: 
    threads = {}    -- list of all live threads
    function get (host, file)
      -- create coroutine
      local co = coroutine.create(function ()
        download(host, file)
      end)
      -- insert it in the list
      table.insert(threads, co)
    end

The table threads keeps a list of all live threads, for the dispatcher. 

The dispatcher is simple. It is mainly a loop that goes through all threads, calling one by one. It 
must also remove from the list the threads that finish their tasks. It stops the loop when there are no 
more threads to run: 
    function dispatcher ()
      while true do
        local n = table.getn(threads)
        if n == 0 then break end   -- no more threads to run
        for i=1,n do
          local status, res = coroutine.resume(threads[i])
          if not res then    -- thread finished its task?
            table.remove(threads, i)
            break
          end
        end
      end
    end

Finally, the main program creates the threads it needs and calls the dispatcher. For instance, to 
download four documents from the W3C site, the main program could be like this: 
    host = "www.w3.org"
    
    get(host, "/TR/html401/html40.txt")
    get(host,"/TR/2002/REC-xhtml1-20020801/xhtml1.pdf")
    get(host,"/TR/REC-html32.html")
    get(host,
        "/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.txt")
    
    dispatcher()   -- main loop

My machine takes six seconds to download those four files using coroutines. With the sequential 
implementation, it takes more than twice that time (15 seconds). 

Despite the speedup, this last implementation is far from optimal. Everything goes fine while at 
least one thread has something to read. However, when no thread has data to read, the dispatcher 
does a busy wait, going from thread to thread only to check that they still have no data. As a result, 



this coroutine implementation uses almost 30 times more CPU than the sequential solution. 

To avoid this behavior, we can use the select function from LuaSocket. It allows a program to 
block while waiting for a status change in a group of sockets. The changes in our implementation 
are small. We only have to change the dispatcher. The new version is like this: 
    function dispatcher ()
      while true do
        local n = table.getn(threads)
        if n == 0 then break end   -- no more threads to run
        local connections = {}
        for i=1,n do
          local status, res = coroutine.resume(threads[i])
          if not res then    -- thread finished its task?
            table.remove(threads, i)
            break
          else    -- timeout
            table.insert(connections, res)
          end
        end
        if table.getn(connections) == n then
          socket.select(connections)
        end
      end
    end

Along the inner loop, this new dispatcher collects the timed-out connections in table 
connections. Remember that receive passes such connections to yield; thus resume 
returns them. When all connections time out, the dispatcher calls select to wait for any of those 
connections to change status. This final implementation runs as fast as the first implementation with 
coroutines. Moreover, as it does no busy waits, it uses just a little more CPU than the sequential 
implementation. 

10 - Complete Examples
To end this introduction about the language, we show two complete programs that illustrate 
different facilities of Lua. The first example is a real program from the Lua site; it illustrates the use 
of Lua as a data description language. The second example is an implementation of the Markov 
chain algorithm, described by Kernighan & Pike in their book The Practice of Programming 
(Addison-Wesley, 1999). 

10.1 - Data Description
The Lua site keeps a database containing a sample of projects around the world that use Lua. We 
represent each entry in the database by a constructor in an auto-documented way, as the following 
example shows: 
    entry{
      title = "Tecgraf",
      org = "Computer Graphics Technology Group, PUC-Rio",
      url = "http://www.tecgraf.puc-rio.br/",
      contact = "Waldemar Celes",
      description = [[
        TeCGraf is the result of a partnership between PUC-Rio,
        the Pontifical Catholic University of Rio de Janeiro,



        and <A HREF="http://www.petrobras.com.br/">PETROBRAS</A>,
        the Brazilian Oil Company.
        TeCGraf is Lua's birthplace,
        and the language has been used there since 1993.
        Currently, more than thirty programmers in TeCGraf use
        Lua regularly; they have written more than two hundred
        thousand lines of code, distributed among dozens of
        final products.]]
      }

The interesting thing about this representation is that a file with a sequence of such entries is a Lua 
program, which does a sequence of calls to a function entry, using the tables as the call 
arguments. 

Our goal is to write a program that shows that data in HTML, so that it becomes the web page 
http://www.lua.org/uses.html. Because there are many projects, the final page first 
shows a list of all project titles, and then shows the details of each project. The result of the program 
is something like this: 
    <HTML>
    <HEAD><TITLE>Projects using Lua</TITLE></HEAD>
    <BODY BGCOLOR="#FFFFFF">
    Here are brief descriptions of some projects around the
    world that use <A HREF="home.html">Lua</A>.
    <BR>
    <UL>
    <LI><A HREF="#1">TeCGraf</A>
    <LI> ...
    </UL>
    
    <H3>
    <A NAME="1" HREF="http://www.tecgraf.puc-rio.br/">TeCGraf</A>
    <BR>
    <SMALL><EM>Computer Graphics Technology Group,
               PUC-Rio</EM></SMALL>
    </H3>
    
        TeCGraf is the result of a partnership between
        ...
        distributed among dozens of final products.<P>
    Contact: Waldemar Celes
    
    <A NAME="2"></A><HR>
    ...
    
    </BODY></HTML>

To read the data, all the program has to do is to give a proper definition for entry, and then run the 
data file as a program (with dofile). Note that we have to traverse all the entries twice, first for 
the title list, and again for the project descriptions. A first approach would be to collect all entries in 
an array. However, because Lua compiles so fast, there is a second attractive solution: run the data 
file twice, each time with a different definition for entry. We follow this approach in the next 
program. 

First, we define an auxiliary function for writing formatted text (we already saw this function in 
Section 5.2): 
    function fwrite (fmt, ...)
      return io.write(string.format(fmt, unpack(arg)))
    end



The BEGIN function simply writes the page header, which is always the same: 
    function BEGIN()
      io.write([[
        <HTML>
        <HEAD><TITLE>Projects using Lua</TITLE></HEAD>
        <BODY BGCOLOR="#FFFFFF">
        Here are brief descriptions of some projects around the
        world that use <A HREF="home.html">Lua</A>.
        <BR>
      ]])
    end

The first definition for entry writes each title project as a list item. The argument o will be the 
table describing the project: 
    function entry0 (o)
      N=N + 1
      local title = o.title or '(no title)'
      fwrite('<LI><A HREF="#%d">%s</A>\n', N, title)
    end

If o.title is nil (that is, the field was not provided), the function uses a fixed string "(no 
title)". 

The second definition writes all useful data about a project. It is a little more complex, because all 
items are optional. 
    function entry1 (o)
      N=N + 1
      local title = o.title or o.org or 'org'
      fwrite('<HR>\n<H3>\n')
      local href = ''
    
      if o.url then
        href = string.format(' HREF="%s"', o.url)
      end
      fwrite('<A NAME="%d"%s>%s</A>\n', N, href, title)
    
      if o.title and o.org then
        fwrite('<BR>\n<SMALL><EM>%s</EM></SMALL>', o.org)
      end
      fwrite('\n</H3>\n')
    
      if o.description then
        fwrite('%s', string.gsub(o.description,
                                 '\n\n\n*', '<P>\n'))
        fwrite('<P>\n')
      end
    
      if o.email then
        fwrite('Contact: <A HREF="mailto:%s">%s</A>\n',
               o.email, o.contact or o.email)
      elseif o.contact then
        fwrite('Contact: %s\n', o.contact)
      end
    end

(To avoid conflict with HTML, which uses double quotes, we used only single quotes in this 
program.) The last function closes the page: 
    function END()
      fwrite('</BODY></HTML>\n')



    end

Finally, the main program starts the page, runs the data file with the first definition for entry 
(entry0) to create the list of titles, then runs the data file again with the second definition for 
entry, and closes the page: 
    BEGIN()
    
    N = 0
    entry = entry0
    fwrite('<UL>\n')
    dofile('db.lua')
    fwrite('</UL>\n')
    
    N = 0
    entry = entry1
    dofile('db.lua')
    
    END()

10.2 - Markov Chain Algorithm
Our second example is an implementation of the Markov chain algorithm. The program generates 
random text, based on what words may follow a sequence of n previous words in a base text. For 
this implementation, we will use n=2. 

The first part of the program reads the base text and builds a table that, for each prefix of two 
words, gives a list with the words that follow that prefix in the text. After building the table, the 
program uses the table to generate random text, wherein each word follows two previous words 
with the same probability of the base text. As a result, we have text that is very, but not quite, 
random. For instance, when applied over this book, the output of the program has pieces like 
"Constructors can also traverse a table constructor, then the parentheses in the following line does 
the whole file in a field n to store the contents of each function, but to show its only argument. If  
you want to find the maximum element in an array can return both the maximum value and 
continues showing the prompt and running the code. The following words are reserved and cannot 
be used to convert between degrees and radians." 

We will code each prefix by its two words concatenated with spaces in between: 
    function prefix (w1, w2)
      return w1 .. ' ' .. w2
    end

We use the string NOWORD ("\n") to initialize the prefix words and to mark the end of the text. For 
instance, for the following text 
    the more we try the more we do

the table of following words would be 
    { ["\n \n"] = {"the"},
      ["\n the"] = {"more"},
      ["the more"] = {"we", "we"},
      ["more we"] = {"try", "do"},
      ["we try"] = {"the"},
      ["try the"] = {"more"},
      ["we do"] = {"\n"},
    }



The program keeps its table in the global variable statetab. To insert a new word in a prefix list 
of this table, we use the following function: 
    function insert (index, value)
      if not statetab[index] then
        statetab[index] = {value}
      else
        table.insert(statetab[index], value)
      end
    end

It first checks whether that prefix already has a list; if not, it creates a new one with the new value. 
Otherwise, it uses the predefined function table.insert to insert the new value at the end of 
the existing list. 

To build the statetab table, we keep two variables, w1 and w2, with the last two words read. For 
each prefix, we keep a list of all words that follow it. 

After building the table, the program starts to generate a text with MAXGEN words. First, it re-
initializes variables w1 and w2. Then, for each prefix, it chooses randomly a next word from the list 
of valid next words, prints that word, and updates w1 and w2. Next we show the complete program. 
    -- Markov Chain Program in Lua
    
    function allwords ()
      local line = io.read()    -- current line
      local pos = 1             -- current position in the line
      return function ()        -- iterator function
        while line do           -- repeat while there are lines
          local s, e = string.find(line, "%w+", pos)
          if s then      -- found a word?
            pos = e + 1  -- update next position
            return string.sub(line, s, e)   -- return the word
          else
            line = io.read()    -- word not found; try next line
            pos = 1             -- restart from first position
          end
        end
        return nil            -- no more lines: end of traversal
      end
    end
    
    function prefix (w1, w2)
      return w1 .. ' ' .. w2
    end
    
    local statetab
    
    function insert (index, value)
      if not statetab[index] then
        statetab[index] = {n=0}
      end
      table.insert(statetab[index], value)
    end
    
    local N  = 2
    local MAXGEN = 10000
    local NOWORD = "\n"
    
    -- build table
    statetab = {}
    local w1, w2 = NOWORD, NOWORD
    for w in allwords() do



      insert(prefix(w1, w2), w)
      w1 = w2; w2 = w;
    end
    insert(prefix(w1, w2), NOWORD)

    -- generate text
    w1 = NOWORD; w2 = NOWORD     -- reinitialize
    for i=1,MAXGEN do
      local list = statetab[prefix(w1, w2)]
      -- choose a random item from list
      local r = math.random(table.getn(list))
      local nextword = list[r]
      if nextword == NOWORD then return end
      io.write(nextword, " ")
      w1 = w2; w2 = nextword
    end

11 - Data Structures
Tables in Lua are not a data structure; they are the data structure. All structures that other languages 
offer---arrays, records, lists, queues, sets---are represented with tables in Lua. More to the point, 
tables implement all these structures efficiently. 

In traditional languages, such as C and Pascal, we implement most data structures with arrays and 
lists (where lists = records + pointers). Although we can implement arrays and lists using Lua tables 
(and sometimes we do that), tables are more powerful than arrays and lists; many algorithms are 
simplified to the point of triviality with the use of tables. For instance, you seldom write a search in 
Lua, because tables offer direct access to any type. 

It takes a while to learn how to use tables efficiently. Here, we will show how you can implement 
typical data structures with tables and will provide some examples of their use. We will start with 
arrays and lists, not because we need them for the other structures, but because most programmers 
are already familiar with them. We have already seen the basics of this material in our chapters 
about the language, but I will repeat it here for completeness. 

11.1 - Arrays
We implement arrays in Lua simply by indexing tables with integers. Therefore, arrays do not have 
a fixed size, but grow as we need. Usually, when we initialize the array we define its size indirectly. 
For instance, after the following code 
    a = {}    -- new array
    for i=1, 1000 do
      a[i] = 0
    end

any attempt to access a field outside the range 1-1000 will return nil, instead of zero. 

You can start an array at index 0, 1, or any other value: 
    -- creates an array with indices from -5 to 5
    a = {}
    for i=-5, 5 do
      a[i] = 0
    end



However, it is customary in Lua to start arrays with index 1. The Lua libraries adhere to this 
convention; so, if your arrays also start with 1, you will be able to use their functions directly. 

We can use constructors to create and initialize arrays in a single expression: 
    squares = {1, 4, 9, 16, 25, 36, 49, 64, 81}

Such constructors can be as large as you need (well, up to a few million elements). 

11.2 - Matrices and Multi-Dimensional Arrays
There are two main ways to represent matrices in Lua. The first one is to use an array of arrays, that 
is, a table wherein each element is another table. For instance, you can create a matrix of zeros with 
dimensions N by M with the following code: 
    mt = {}          -- create the matrix
    for i=1,N do
      mt[i] = {}     -- create a new row
      for j=1,M do
        mt[i][j] = 0
      end
    end

Because tables are objects in Lua, you have to create each row explicitly to create a matrix. On the 
one hand, this is certainly more verbose than simply declaring a matrix, as you do in C or Pascal. 
On the other hand, that gives you more flexibility. For instance, you can create a triangular matrix 
changing the line 
      for j=1,M do

in the previous example to 
      for j=1,i do

With that code, the triangular matrix uses only half the memory of the original one. 

The second way to represent a matrix in Lua is by composing the two indices into a single one. If 
the two indices are integers, you can multiply the first one by a constant and then add the second 
index. With this approach, the following code would create our matrix of zeros with dimensions N 
by M: 
    mt = {}          -- create the matrix
    for i=1,N do
      for j=1,M do
        mt[i*M + j] = 0
      end
    end

If the indices are strings, you can create a single index concatenating both indices with a character 
in between to separate them. For instance, you can index a matrix m with string indices s and t with 
the code m[s..':'..t], provided that both s and t do not contain colons (otherwise, pairs like 
("a:", "b") and ("a", ":b") would collapse into a single index "a::b"). When in doubt, you 
can use a control character like `\0´ to separate the indices. 

Quite often, applications use a sparse matrix, a matrix wherein most elements are 0 or nil. For 
instance, you can represent a graph by its adjacency matrix, which has the value x in position m,n 
only when the nodes m and n are connected with cost x; when those nodes are not connected, the 



value in position m,n is nil. To represent a graph with ten thousand nodes, where each node has 
about five neighbors, you will need a matrix with a hundred million entries (a square matrix with 
10,000 columns and 10,000 rows), but approximately only fifty thousand of them will not be nil 
(five non-nil columns for each row, corresponding to the five neighbors of each node). Many books 
on data structures discuss at length how to implement such sparse matrices without wasting 400 MB 
of memory, but you do not need those techniques when programming in Lua. Because arrays are 
represented by tables, they are naturally sparse. With our first representation (tables of tables), you 
will need ten thousand tables, each one with about five elements, with a grand total of fifty 
thousand entries. With the second representation, you will have a single table, with fifty thousand 
entries in it. Whatever the representation, you only need space for the non-nil elements. 

11.3 - Linked Lists
Because tables are dynamic entities, it is easy to implement linked lists in Lua. Each node is 
represented by a table and links are simply table fields that contain references to other tables. For 
instance, to implement a basic list, where each node has two fields, next and value, we need a 
variable to be the list root: 
    list = nil

To insert an element at the beginning of the list, with a value v, we do 
    list = {next = list, value = v}

To traverse the list, we write: 
    local l = list
    while l do
      print(l.value)
      l = l.next
    end

Other kinds of lists, such as double-linked lists or circular lists, are also implemented easily. 
However, you seldom need those structures in Lua, because usually there is a simpler way to 
represent your data without using lists. For instance, we can represent a stack with an (unbounded) 
array, with a field n pointing to the top. 

11.4 - Queues and Double Queues
Although we can implement queues trivially using insert and remove (from the table 
library), this implementation can be too slow for large structures. A more efficient implementation 
uses two indices, one for the first and another for the last element: 
    function ListNew ()
      return {first = 0, last = -1}
    end

To avoid polluting the global space, we will define all list operations inside a table, properly called 
List. Therefore, we rewrite our last example like this: 
    List = {}
    function List.new ()
      return {first = 0, last = -1}
    end



Now, we can insert or remove an element at both ends in constant time: 
    function List.pushleft (list, value)
      local first = list.first - 1
      list.first = first
      list[first] = value
    end
    
    function List.pushright (list, value)
      local last = list.last + 1
      list.last = last
      list[last] = value
    end
    
    function List.popleft (list)
      local first = list.first
      if first > list.last then error("list is empty") end
      local value = list[first]
      list[first] = nil        -- to allow garbage collection
      list.first = first + 1
      return value
    end
    
    function List.popright (list)
      local last = list.last
      if list.first > last then error("list is empty") end
      local value = list[last]
      list[last] = nil         -- to allow garbage collection
      list.last = last - 1
      return value
    end

If you use this structure in a strict queue discipline, calling only pushright and popleft, both 
first and last will increase continually. However, because we represent arrays in Lua with 
tables, you can index them either from 1 to 20 or from 16,777,216 to 16,777,236. Moreover, 
because Lua uses double precision to represent numbers, your program can run for two hundred 
years, doing one million insertions per second, before it has problems with overflows. 

11.5 - Sets and Bags
Suppose you want to list all identifiers used in a program source; somehow you need to filter the 
reserved words out of your listing. Some C programmers could be tempted to represent the set of 
reserved words as an array of strings, and then to search this array to know whether a given word is 
in the set. To speed up the search, they could even use a binary tree or a hash table to represent the 
set. 

In Lua, an efficient and simple way to represent such sets is to put the set elements as indices in a 
table. Then, instead of searching the table for a given element, you just index the table and test 
whether the result is nil or not. In our example, we could write the next code: 
    reserved = {
      ["while"] = true,     ["end"] = true,
      ["function"] = true,  ["local"] = true,
    }
    
    for w in allwords() do
      if reserved[w] then
        -- `w' is a reserved word
        ...



(Because while is a reserved word in Lua, we cannot use it as an identifier. Therefore, we cannot 
write while = 1; instead, we use the ["while"] = 1 notation.) 

You can have a clearer initialization using an auxiliary function to build the set: 
    function Set (list)
      local set = {}
      for _, l in ipairs(list) do set[l] = true end
      return set
    end
    
    reserved = Set{"while", "end", "function", "local", }

11.6 - String Buffers
Suppose you are building a string piecemeal, for instance reading a file line by line. Your typical 
code would look like this: 
    -- WARNING: bad code ahead!!
    local buff = ""
    for line in io.lines() do
    buff = buff .. line .. "\n"
    end

Despite its innocent look, that code in Lua can cause a huge performance penalty for large files: For 
instance, it takes almost a minute to read a 350 KB file. (That is why Lua provides the 
io.read("*all") option, which reads the whole file in 0.02 seconds.) 

Why is that? Lua uses a true garbage-collection algorithm; when it detects that the program is using 
too much memory, it goes through all its data structures and frees those structures that are not in use 
anymore (the garbage). Usually this algorithm has a good performance (it is not by chance that Lua 
is so fast), but the above loop takes the worst of the algorithm. 

To understand what happens, let us assume that we are in the middle of the read loop; buff is 
already a string with 50 KB and each line has 20 bytes. When Lua concatenates 
buff..line.."\n", it creates a new string with 50,020 bytes and copies 50 KB from buff 
into this new string. That is, for each new line, Lua moves 50 KB of memory, and growing. After 
reading 100 new lines (only 2 KB), Lua has already moved more than 5 MB of memory. To make 
things worse, after the assignment 
        buff = buff .. line .. "\n"

the old string is now garbage. After two loop cycles, there are two old strings making a total of 
more than 100 KB of garbage. So, Lua decides, quite correctly, that it is a good time to run its 
garbage collector and so it frees those 100 KB. The problem is that this will happen every two 
cycles and so Lua will run its garbage collector two thousand times before reading the whole file. 
Even with all this work, its memory usage will be approximately three times the file size. 

This problem is not peculiar to Lua: Other languages with true garbage collection, and where strings 
are immutable objects, present a similar behavior, Java being the most famous example. (Java offers 
the structure StringBuffer to ameliorate the problem.) 

Before we continue, we should remark that, despite all I said, that situation is not a common 
problem. For small strings, the above loop is OK. To read a whole file, we use the "*all" option, 
which reads it at once. However, sometimes there are no simple solutions. Then, the only solution is 
a more efficient algorithm. Here we show one. 

Our original loop took a linear approach to the problem, concatenating small strings one by one into 



the accumulator. This new algorithm avoids this, using a binary approach instead. It concatenates 
several small strings among them and, occasionally, it concatenates the resulting large strings into 
larger ones. The heart of the algorithm is a stack that keeps the large strings already created in its 
bottom, while small strings enter through the top. The main invariant of this stack is similar to that 
of the popular (among programmers, at least) Tower of Hanoi: A string in the stack can never sit 
over a shorter string. Whenever a new string is pushed over a shorter one, then (and only then) the 
algorithm concatenates both. This concatenation creates a larger string, which now may be larger 
than its neighbor in the previous floor. If that happens, they are joined too. Those concatenations go 
down the stack until the loop reaches a larger string or the stack bottom. 
    function newStack ()
      return {""}   -- starts with an empty string
    end
    
    function addString (stack, s)
      table.insert(stack, s)    -- push 's' into the the stack
      for i=table.getn(stack)-1, 1, -1 do
        if string.len(stack[i]) > string.len(stack[i+1]) then
          break
        end
        stack[i] = stack[i] .. table.remove(stack)
      end
    end

To get the final contents of the buffer, we just need to concatenate all strings down to the bottom. 
The table.concat function does exactly that: It concatenates all strings of a list. 

Using this new data structure, we can rewrite our program as follows: 
    local s = newStack()
    for line in io.lines() do
      addString(s, line .. "\n")
    end
    s = toString(s)

This new program reduces our original time to read a 350 KB file from 40 seconds to 0.5 seconds. 
The call io.read("*all") is still faster, finishing the job in 0.02 seconds. 

Actually, when we call io.read("*all"), io.read uses exactly the data structure that we 
presented here, but implemented in C. Several other functions in the Lua libraries also use this C 
implementation. One of these functions is table.concat. With concat, we can simply collect 
all strings in a table and then concatenate all of them at once. Because concat uses the C 
implementation, it is efficient even for huge strings. 

The concat function accepts an optional second argument, which is a separator to be inserted 
between the strings. Using this separator, we do not need to insert a newline after each line: 
    local t = {}
    for line in io.lines() do
      table.insert(t, line)
    end
    s = table.concat(t, "\n") .. "\n"

(The io.lines iterator returns each line without the newline.) concat inserts the separator 
between the strings, but not after the last one, so we have to add the last newline. This last 
concatenation duplicates the resulting string, which can be quite big. There is no option to make 
concat insert this extra separator, but we can deceive it, inserting an extra empty string in t: 
    table.insert(t, "")
    s = table.concat(t, "\n")



The extra newline that concat adds before this empty string is at the end of the resulting string, as 
we wanted. 

12 - Data Files and Persistence
When dealing with data files, it is usually much easier to write the data than to read them back. 
When we write a file, we have full control of what is going on. When we read a file, on the other 
hand, we do not know what to expect. Besides all kinds of data that a correct file may contain, a 
robust program should also handle bad files gracefully. Because of that, coding robust input routines 
is always difficult. 

As we saw in the example of Section 10.1, table constructors provide an interesting alternative for 
file formats. With a little extra work when writing data, reading becomes trivial. The technique is to 
write our data file as Lua code that, when runs, builds the data into the program. With table 
constructors, these chunks can look remarkably like a plain data file. 

As usual, let us see an example to make things clear. If our data file is in a predefined format, such 
as CSV (Comma-Separated Values), we have little choice. (In Chapter 20, we will see how to read 
CSV in Lua.) However, if we are going to create the file for later use, we can use Lua constructors 
as our format, instead of CSV. In this format, we represent each data record as a Lua constructor. 
Instead of writing something like 
    Donald E. Knuth,Literate Programming,CSLI,1992
    Jon Bentley,More Programming Pearls,Addison-Wesley,1990

in our data file, we write 
    Entry{"Donald E. Knuth",
          "Literate Programming",
          "CSLI",
          1992}
    
    Entry{"Jon Bentley",
          "More Programming Pearls",
          "Addison-Wesley",
          1990}

Remember that Entry{...} is the same as Entry({...}), that is, a call to function Entry 
with a table as its single argument. Therefore, this previous piece of data is a Lua program. To read 
this file, we only need to run it, with a sensible definition for Entry. For instance, the following 
program counts the number of entries in a data file: 
    local count = 0
    function Entry (b) count = count + 1 end
    dofile("data")
    print("number of entries: " .. count)

The next program collects in a set the names of all authors found in the file, and then prints them. 
(The author's name is the first field in each entry; so, if b is an entry value, b[1] is the author.) 
    local authors = {}      -- a set to collect authors
    function Entry (b) authors[b[1]] = true end
    dofile("data")
    for name in pairs(authors) do print(name) end

Notice the event-driven approach in these program fragments: The Entry function acts as a 



callback function, which is called during the dofile for each entry in the data file. 

When file size is not a big concern, we can use name-value pairs for our representation: 
    Entry{
      author = "Donald E. Knuth",
      title = "Literate Programming",
      publisher = "CSLI",
      year = 1992
    }
    
    Entry{
      author = "Jon Bentley",
      title = "More Programming Pearls",
      publisher = "Addison-Wesley",
      year = 1990
    }

(If this format reminds you of BibTeX, it is not a coincidence. BibTeX was one of the inspirations 
for the constructor syntax in Lua.) This format is what we call a self-describing data format, 
because each piece of data has attached to it a short description of its meaning. Self-describing data 
are more readable (by humans, at least) than CSV or other compact notations; they are easy to edit 
by hand, when necessary; and they allow us to make small modifications without having to change 
the data file. For instance, if we add a new field we need only a small change in the reading 
program, so that it supplies a default value when the field is absent. 

With the name-value format, our program to collect authors becomes 
    local authors = {}      -- a set to collect authors
    function Entry (b) authors[b.author] = true end
    dofile("data")
    for name in pairs(authors) do print(name) end

Now the order of fields is irrelevant. Even if some entries do not have an author, we only have to 
change Entry: 
    function Entry (b)
      if b.author then authors[b.author] = true end
    end

Lua not only runs fast, but it also compiles fast. For instance, the above program for listing authors 
runs in less than one second for 2 MB of data. Again, this is not by chance. Data description has 
been one of the main applications of Lua since its creation and we took great care to make its 
compiler fast for large chunks. 

12.1 - Serialization
Frequently we need to serialize some data, that is, to convert the data into a stream of bytes or 
characters, so that we can save it into a file or send it through a network connection. We can 
represent serialized data as Lua code, in such a way that, when we run the code, it reconstructs the 
saved values into the reading program. 

Usually, if we want to restore the value of a global variable, our chunk will be something like 
varname = <exp>, where <exp> is the Lua code to create the value. The varname is the easy 
part, so let us see how to write the code that creates a value. For a numeric value, the task is easy: 
    function serialize (o)
      if type(o) == "number" then



        io.write(o)
      else ...
    end

For a string value, a naive approach would be something like 
    if type(o) == "string" then
      io.write("'", o, "'")

However, if the string contains special characters (such as quotes or newlines) the resulting code 
will not be a valid Lua program. Here, you may be tempted to solve this problem changing quotes: 
    if type(o) == "string" then
      io.write("[[", o, "]]")

Do not do that! Double square brackets are intended for hand-written strings, not for automatically 
generated ones. If a malicious user manages to direct your program to save something like 
" ]]..os.execute('rm *')..[[ " (for instance, she can supply that string as her 
address), your final chunk will be 
    varname = [[ ]]..os.execute('rm *')..[[ ]]

You will have a bad surprise trying to load this "data". 

To quote an arbitrary string in a secure way, the format function, from the standard string 
library, offers the option "%q". It surrounds the string with double quotes and properly escapes 
double quotes, newlines, and some other characters inside the string. Using this feature, our 
serialize function now looks like this: 
    function serialize (o)
      if type(o) == "number" then
        io.write(o)
      elseif type(o) == "string" then
        io.write(string.format("%q", o))
      else ...
    end

12.1.1 - Saving Tables without Cycles
Our next (and harder) task is to save tables. There are several ways to do that, according to what 
restrictions we assume about the table structure. No single algorithm is appropriate for all cases. 
Simple tables not only need simpler algorithms, but the resulting files can be more aesthetic, too. 

Our first attempt is as follows: 
    function serialize (o)
      if type(o) == "number" then
        io.write(o)
      elseif type(o) == "string" then
        io.write(string.format("%q", o))
      elseif type(o) == "table" then
        io.write("{\n")
        for k,v in pairs(o) do
          io.write("  ", k, " = ")
          serialize(v)
          io.write(",\n")
        end
        io.write("}\n")
      else



        error("cannot serialize a " .. type(o))
      end
    end

Despite its simplicity, that function does a reasonable job. It even handles nested tables (that is, 
tables within other tables), as long as the table structure is a tree (that is, there are no shared sub-
tables and no cycles). A small aesthetic improvement would be to indent occasional nested tables; 
you can try it as an exercise. (Hint: Add an extra parameter to serialize with the indentation 
string.) 

The previous function assumes that all keys in a table are valid identifiers. If a table has numeric 
keys, or string keys which are not syntactic valid Lua identifiers, we are in trouble. A simple way to 
solve this difficulty is to change the line 
          io.write("  ", k, " = ")

to 
          io.write("  [")
          serialize(k)
          io.write("] = ")

With this change, we improve the robustness of our function, at the cost of the aesthetics of the 
resulting file. Compare: 
    -- result of serialize{a=12, b='Lua', key='another "one"'}
    -- first version
    {
      a = 12,
      b = "Lua",
      key = "another \"one\"",
    }
    
    -- second version
    {
      ["a"] = 12,
      ["b"] = "Lua",
      ["key"] = "another \"one\"",
    }

We can improve this result by testing for each case whether it needs the square brackets; again, we 
will leave this improvement as an exercise. 

12.1.2 - Saving Tables with Cycles
To handle tables with generic topology (i.e., with cycles and shared sub-tables) we need a different 
approach. Constructors cannot represent such tables, so we will not use them. To represent cycles 
we need names, so our next function will get as arguments the value to be saved plus its name. 
Moreover, we must keep track of the names of the tables already saved, to reuse them when we 
detect a cycle. We will use an extra table for this tracking. This table will have tables as indices and 
their names as the associated values. 

We will keep the restriction that the tables we want to save have only strings or numbers as keys. 
The following function serializes these basic types, returning the result: 
    function basicSerialize (o)
      if type(o) == "number" then
        return tostring(o)
      else   -- assume it is a string



        return string.format("%q", o)
      end
    end

The next function does the hard work. The saved parameter is the table that keeps track of tables 
already saved: 
    function save (name, value, saved)
      saved = saved or {}       -- initial value
      io.write(name, " = ")
      if type(value) == "number" or type(value) == "string" then
        io.write(basicSerialize(value), "\n")
      elseif type(value) == "table" then
        if saved[value] then    -- value already saved?
          io.write(saved[value], "\n")  -- use its previous name
        else
          saved[value] = name   -- save name for next time
          io.write("{}\n")     -- create a new table
          for k,v in pairs(value) do      -- save its fields
            local fieldname = string.format("%s[%s]", name,
                                            basicSerialize(k))
            save(fieldname, v, saved)
          end
        end
      else
        error("cannot save a " .. type(value))
      end
    end

As an example, if we build a table like 
    a = {x=1, y=2; {3,4,5}}
    a[2] = a    -- cycle
    a.z = a[1]  -- shared sub-table

then the call save('a', a) will save it as follows: 
    a = {}
    a[1] = {}
    a[1][1] = 3
    a[1][2] = 4
    a[1][3] = 5
    
    a[2] = a
    a["y"] = 2
    a["x"] = 1
    a["z"] = a[1]

(The actual order of these assignments may vary, as it depends on a table traversal. Nevertheless, 
the algorithm ensures that any previous node needed in a new definition is already defined.) 

If we want to save several values with shared parts, we can make the calls to save using the same 
saved table. For instance, if we create the following two tables, 
    a = {{"one", "two"}, 3}
    b = {k = a[1]}

and save them as follows, 
    save('a', a)
    save('b', b)

the result will not have common parts: 



    a = {}
    a[1] = {}
    a[1][1] = "one"
    a[1][2] = "two"
    a[2] = 3
    b = {}
    b["k"] = {}
    b["k"][1] = "one"
    b["k"][2] = "two"

However, if we use the same saved table for each call to save, 
    local t = {}
    save('a', a, t)
    save('b', b, t)

then the result will share common parts: 
    a = {}
    a[1] = {}
    a[1][1] = "one"
    a[1][2] = "two"
    a[2] = 3
    b = {}
    b["k"] = a[1]

As is usual in Lua, there are several other alternatives. Among them, we can save a value without 
giving it a global name (instead, the chunk builds a local value and returns it); we can handle 
functions (by building a table that associates each function to its name) etc. Lua gives you the 
power; you build the mechanisms. 

13 - Metatables and Metamethods
Usually, tables in Lua have a quite predictable set of operations. We can add key-value pairs, we can 
check the value associated with a key, we can traverse all key-value pairs, and that is all. We cannot 
add tables, we cannot compare tables, and we cannot call a table. 

Metatables allow us to change the behavior of a table. For instance, using metatables, we can define 
how Lua computes the expression a+b, where a and b are tables. Whenever Lua tries to add two 
tables, it checks whether either of them has a metatable and whether that metatable has an __add 
field. If Lua finds this field, it calls the corresponding value (the so-called metamethod, which 
should be a function) to compute the sum. 

Each table in Lua may have its own metatable. (As we will see later, userdata also can have 
metatables.) Lua always create new tables without metatables: 
    t = {}
    print(getmetatable(t))   --> nil

We can use setmetatable to set or change the metatable of any table: 
    t1 = {}
    setmetatable(t, t1)
    assert(getmetatable(t) == t1)

Any table can be the metatable of any other table; a group of related tables may share a common 
metatable (which describes their common behavior); a table can be its own metatable (so that it 



describes its own individual behavior). Any configuration is valid. 

13.1 - Arithmetic Metamethods
In this section, we will introduce a simple example to explain how to use metatables. Suppose we 
are using tables to represent sets, with functions to compute the union of two sets, intersection, and 
the like. As we did with lists, we store these functions inside a table and we define a constructor to 
create new sets: 
    Set = {}
    
    function Set.new (t)
      local set = {}
      for _, l in ipairs(t) do set[l] = true end
      return set
    end
    
    function Set.union (a,b)
      local res = Set.new{}
      for k in pairs(a) do res[k] = true end
      for k in pairs(b) do res[k] = true end
      return res
    end
    
    function Set.intersection (a,b)
      local res = Set.new{}
      for k in pairs(a) do
        res[k] = b[k]
      end
      return res
    end

To help checking our examples, we also define a function to print sets: 
    function Set.tostring (set)
      local s = "{"
      local sep = ""
      for e in pairs(set) do
        s = s .. sep .. e
        sep = ", "
      end
      return s .. "}"
    end
    
    function Set.print (s)
      print(Set.tostring(s))
    end

Now, we want to make the addition operator (`+´) compute the union of two sets. For that, we will 
arrange that all tables representing sets share a metatable and this metatable will define how they 
react to the addition operator. Our first step is to create a regular table that we will use as the 
metatable for sets. To avoid polluting our namespace, we will store it in the Set table: 
    Set.mt = {}    -- metatable for sets

The next step is to modify the Set.new function, which creates sets. The new version has only one 
extra line, which sets mt as the metatable for the tables that it creates: 
    function Set.new (t)   -- 2nd version



      local set = {}
      setmetatable(set, Set.mt)
      for _, l in ipairs(t) do set[l] = true end
      return set
    end

After that, every set we create with Set.new will have that same table as its metatable: 
    s1 = Set.new{10, 20, 30, 50}
    s2 = Set.new{30, 1}
    print(getmetatable(s1))          --> table: 00672B60
    print(getmetatable(s2))          --> table: 00672B60

Finally, we add to the metatable the so-called metamethod, a field __add that describes how to 
perform the union: 
    Set.mt.__add = Set.union

Whenever Lua tries to add two sets, it will call this function, with the two operands as arguments. 

With the metamethod in place, we can use the addition operator to do set unions: 
    s3 = s1 + s2
    Set.print(s3)  --> {1, 10, 20, 30, 50}

Similarly, we may use the multiplication operator to perform set intersection: 
    Set.mt.__mul = Set.intersection
    
    Set.print((s1 + s2)*s1)     --> {10, 20, 30, 50}

For each arithmetic operator there is a corresponding field name in a metatable. Besides __add and 
__mul, there are __sub (for subtraction), __div (for division), __unm (for negation), and 
__pow (for exponentiation). We may define also the field __concat, to define a behavior for the 
concatenation operator. 

When we add two sets, there is no question about what metatable to use. However, we may write an 
expression that mixes two values with different metatables, for instance like this: 
    s = Set.new{1,2,3}
    s = s + 8

To choose a metamethod, Lua does the following: (1) If the first value has a metatable with an 
__add field, Lua uses this value as the metamethod, independently of the second value; (2) 
otherwise, if the second value has a metatable with an __add field, Lua uses this value as the 
metamethod; (3) otherwise, Lua raises an error. Therefore, the last example will call Set.union, 
as will the expressions 10 + s and "hy" + s. 

Lua does not care about those mixed types, but our implementation does. If we run the s = s + 
8 example, the error we get will be inside Set.union: 
    bad argument #1 to `pairs' (table expected, got number)

If we want more lucid error messages, we must check the type of the operands explicitly before 
attempting to perform the operation: 
    function Set.union (a,b)
      if getmetatable(a) ~= Set.mt or
         getmetatable(b) ~= Set.mt then
        error("attempt to `add' a set with a non-set value", 2)
      end



      ...  -- same as before

13.2 - Relational Metamethods
Metatables also allow us to give meaning to the relational operators, through the metamethods 
__eq (equality), __lt (less than), and __le (less or equal). There are no separate metamethods 
for the other three relational operators, as Lua translates a ~= b to not (a == b), a > b to b 
< a, and a >= b to b <= a. 

(Big parentheses: Until Lua 4.0, all order operators were translated to a single one, by translating a 
<= b to not (b < a). However, this translation is incorrect when we have a partial order, that 
is, when not all elements in our type are properly ordered. For instance, floating-point numbers are 
not totally ordered in most machines, because of the value Not a Number (NaN). According to the 
IEEE 754 standard, currently adopted by virtually every hardware, NaN represents undefined 
values, such as the result of 0/0. The standard specifies that any comparison that involves NaN 
should result in false. That means that NaN <= x is always false, but x < NaN is also false. That 
implies that the translation from a <= b to not (b < a) is not valid in this case.) 

In our example with sets, we have a similar problem. An obvious (and useful) meaning for <= in 
sets is set containment: a <= b means that a is a subset of b. With that meaning, again it is 
possible that both a <= b and b < a are false; therefore, we need separate implementations for 
__le (less or equal) and __lt (less than): 
    Set.mt.__le = function (a,b)    -- set containment
      for k in pairs(a) do
        if not b[k] then return false end
      end
      return true
    end
    
    Set.mt.__lt = function (a,b)
      return a <= b and not (b <= a)
    end

Finally, we can define set equality through set containment: 
    Set.mt.__eq = function (a,b)
      return a <= b and b <= a
    end

After those definitions, we are now ready to compare sets: 
    s1 = Set.new{2, 4}
    s2 = Set.new{4, 10, 2}
    print(s1 <= s2)       --> true
    print(s1 < s2)        --> true
    print(s1 >= s1)       --> true
    print(s1 > s1)        --> false
    print(s1 == s2 * s1)  --> true

Unlike arithmetic metamethods, relational metamethods do not support mixed types. Their behavior 
for mixed types mimics the common behavior of these operators in Lua. If you try to compare a 
string with a number for order, Lua raises an error. Similarly, if you try to compare two objects with 
different metamethods for order, Lua raises an error. 

An equality comparison never raises an error, but if two objects have different metamethods, the 
equality operation results in false, without even calling any metamethod. Again, this behavior 
mimics the common behavior of Lua, which always classifies strings as different from numbers, 



regardless of their values. Lua calls the equality metamethod only when the two objects being 
compared share this metamethod. 

13.3 - Library-Defined Metamethods
It is a common practice for some libraries to define their own fields in metatables. So far, all the 
metamethods we have seen are for the Lua core. It is the virtual machine that detects that the values 
involved in an operation have metatables and that these metatables define metamethods for that 
operation. However, because the metatable is a regular table, anyone can use it. 

The tostring function provides a typical example. As we saw earlier, tostring represents 
tables in a rather simple format: 
    print({})      --> table: 0x8062ac0

(Note that print always calls tostring to format its output.) However, when formatting an 
object, tostring first checks whether the object has a metatable with a __tostring field. If 
this is the case, tostring calls the corresponding value (which must be a function) to do its job, 
passing the object as an argument. Whatever this metamethod returns is the result of tostring. 

In our example with sets, we have already defined a function to present a set as a string. So, we 
need only to set the __tostring field in the set metatable: 
    Set.mt.__tostring = Set.tostring

After that, whenever we call print with a set as its argument, print calls tostring that calls 
Set.tostring: 
    s1 = Set.new{10, 4, 5}
    print(s1)    --> {4, 5, 10}

The setmetatable/getmetatable functions use a metafield also, in this case to protect 
metatables. Suppose you want to protect your sets, so that users can neither see nor change their 
metatables. If you set a __metatable field in the metatable, getmetatable will return the 
value of this field, whereas setmetatable will raise an error: 
    Set.mt.__metatable = "not your business"
    
    s1 = Set.new{}
    print(getmetatable(s1))     --> not your business
    setmetatable(s1, {})
      stdin:1: cannot change protected metatable

13.4 - Table-Access Metamethods
The metamethods for arithmetic and relational operators all define behavior for otherwise erroneous 
situations. They do not change the normal behavior of the language. But Lua also offers a way to 
change the behavior of tables for two normal situations, the query and modification of absent fields 
in a table. 

13.4.1 - The __index Metamethod
I said earlier that, when we access an absent field in a table, the result is nil. This is true, but it is not 



the whole truth. Actually, such access triggers the interpreter to look for an __index metamethod: 
If there is no such method, as usually happens, then the access results in nil; otherwise, the 
metamethod will provide the result. 

The archetypal example here is inheritance. Suppose we want to create several tables describing 
windows. Each table must describe several window parameters, such as position, size, color 
scheme, and the like. All these parameters have default values and so we want to build window 
objects giving only the non-default parameters. A first alternative is to provide a constructor that 
fills in the absent fields. A second alternative is to arrange for the new windows to inherit any 
absent field from a prototype window. First, we declare the prototype and a constructor function, 
which creates new windows sharing a metatable: 
    -- create a namespace
    Window = {}
    -- create the prototype with default values
    Window.prototype = {x=0, y=0, width=100, height=100, }
    -- create a metatable
    Window.mt = {}
    -- declare the constructor function
    function Window.new (o)
      setmetatable(o, Window.mt)
      return o
    end

Now, we define the __index metamethod: 
    Window.mt.__index = function (table, key)
      return Window.prototype[key]
    end

After that code, we create a new window and query it for an absent field: 
    w = Window.new{x=10, y=20}
    print(w.width)    --> 100

When Lua detects that w does not have the requested field, but has a metatable with an __index 
field, Lua calls this __index metamethod, with arguments w (the table) and "width" (the absent 
key). The metamethod then indexes the prototype with the given key and returns the result. 

The use of the __index metamethod for inheritance is so common that Lua provides a shortcut. 
Despite the name, the __index metamethod does not need to be a function: It can be a table, 
instead. When it is a function, Lua calls it with the table and the absent key as its arguments. When 
it is a table, Lua redoes the access in that table. Therefore, in our previous example, we could 
declare __index simply as 
    Window.mt.__index = Window.prototype

Now, when Lua looks for the metatable's __index field, it finds the value of 
Window.prototype, which is a table. Consequently, Lua repeats the access in this table, that is, 
it executes the equivalent of 
    Window.prototype["width"]

which gives the desired result. 

The use of a table as an __index metamethod provides a cheap and simple way of implementing 
single inheritance. A function, although more expensive, provides more flexibility: We can 
implement multiple inheritance, caching, and several other variations. We will discuss those forms 
of inheritance in Chapter 16. 



When we want to access a table without invoking its __index metamethod, we use the rawget 
function. The call rawget(t,i) does a raw access to table t. Doing a raw access will not speed 
up your code (the overhead of a function call kills any gain you could have), but sometimes you 
need it, as we will see later. 

13.4.2 - The __newindex Metamethod
The __newindex metamethod does for table updates what __index does for table accesses. 
When you assign a value to an absent index in a table, the interpreter looks for a __newindex 
metamethod: If there is one, the interpreter calls it instead of making the assignment. Like 
__index, if the metamethod is a table, the interpreter does the assignment in that table, instead of 
in the original one. Moreover, there is a raw function that allows you to bypass the metamethod: 
The call rawset(t, k, v) sets the value v in key k of table t without invoking any 
metamethod. 

The combined use of __index and __newindex metamethods allows several powerful 
constructs in Lua, from read-only tables to tables with default values to inheritance for object-
oriented programming. In the rest of this chapter we see some of these uses. Object-oriented 
programming has its own chapter. 

13.4.3 - Tables with Default Values
The default value of any field in a regular table is nil. It is easy to change this default value with 
metatables: 
    function setDefault (t, d)
      local mt = {__index = function () return d end}
      setmetatable(t, mt)
    end
    
    tab = {x=10, y=20}
    print(tab.x, tab.z)     --> 10   nil
    setDefault(tab, 0)
    print(tab.x, tab.z)     --> 10   0

Now, whenever we access an absent field in tab, its __index metamethod is called and returns 
zero, which is the value of d for that metamethod. 

The setDefault function creates a new metatable for each table that needs a default value. This 
may be expensive if we have many tables that need default values. However, the metatable has the 
default value d wired into itself, so the function cannot use a single metatable for all tables. To 
allow the use of a single metatable for tables with different default values, we can store the default 
value of each table in the table itself, using an exclusive field. If we are not worried about name 
clashes, we can use a key like "___" for our exclusive field: 
    local mt = {__index = function (t) return t.___ end}
    function setDefault (t, d)
      t.___ = d
      setmetatable(t, mt)
    end

If we are worried about name clashes, it is easy to ensure the uniqueness of this special key. All we 
need is to create a new table and use it as the key: 



    local key = {}    -- unique key
    local mt = {__index = function (t) return t[key] end}
    function setDefault (t, d)
      t[key] = d
      setmetatable(t, mt)
    end

An alternative approach to associating each table with its default value is to use a separate table, 
where the indices are the tables and the values are their default values. However, for the correct 
implementation of this approach we need a special breed of table, called weak tables, and so we will 
not use it here; we will return to the subject in Chapter 17. 

Another alternative is to memoize metatables in order to reuse the same metatable for tables with the 
same default. However, that needs weak tables too, so that again we will have to wait until Chapter 
17. 

13.4.4 - Tracking Table Accesses
Both __index and __newindex are relevant only when the index does not exist in the table. The 
only way to catch all accesses to a table is to keep it empty. So, if we want to monitor all accesses to 
a table, we should create a proxy for the real table. This proxy is an empty table, with proper 
__index and __newindex metamethods, which track all accesses and redirect them to the 
original table. Suppose that t is the original table we want to track. We can write something like 
this: 
    t = {}   -- original table (created somewhere)
    
    -- keep a private access to original table
    local _t = t
    
    -- create proxy
    t = {}
    
    -- create metatable
    local mt = {
      __index = function (t,k)
        print("*access to element " .. tostring(k))
        return _t[k]   -- access the original table
      end,
    
      __newindex = function (t,k,v)
        print("*update of element " .. tostring(k) ..
                             " to " .. tostring(v))
        _t[k] = v   -- update original table
      end
    }
    setmetatable(t, mt)

This code tracks every access to t: 
    > t[2] = 'hello'
    *update of element 2 to hello
    > print(t[2])
    *access to element 2
    hello

(Notice that, unfortunately, this scheme does not allow us to traverse tables. The pairs function 
will operate on the proxy, not on the original table.) 



If we want to monitor several tables, we do not need a different metatable for each one. Instead, we 
can somehow associate each proxy to its original table and share a common metatable for all 
proxies. A simple way to associate proxies to tables is to keep the original table in a proxy's field, as 
long as we can be sure that this field will not be used for other means. A simple way to ensure that 
is to create a private key that nobody else can access. Putting these ideas together results in the 
following code: 
    -- create private index
    local index = {}
    
    -- create metatable
    local mt = {
      __index = function (t,k)
        print("*access to element " .. tostring(k))
        return t[index][k]   -- access the original table
      end,
    
      __newindex = function (t,k,v)
        print("*update of element " .. tostring(k) ..
                             " to " .. tostring(v))
        t[index][k] = v   -- update original table
      end
    }
    
    function track (t)
      local proxy = {}
      proxy[index] = t
      setmetatable(proxy, mt)
      return proxy
    end

Now, whenever we want to monitor a table t, all we have to do is t = track(t). 

13.4.5 - Read-Only Tables
It is easy to adapt the concept of proxies to implement read-only tables. All we have to do is to raise 
an error whenever we track any attempt to update the table. For the __index metamethod, we can 
use a table---the original table itself---instead of a function, as we do not need to track queries; it is 
simpler and quite more efficient to redirect all queries to the original table. This use, however, 
demands a new metatable for each read-only proxy, with __index pointing to the original table: 
    function readOnly (t)
      local proxy = {}
      local mt = {       -- create metatable
        __index = t,
        __newindex = function (t,k,v)
          error("attempt to update a read-only table", 2)
        end
      }
      setmetatable(proxy, mt)
      return proxy
    end

(Remember that the second argument to error, 2, directs the error message to where the update 
was attempted.) As an example of use, we can create a read-only table for weekdays: 
    days = readOnly{"Sunday", "Monday", "Tuesday", "Wednesday",
             "Thursday", "Friday", "Saturday"}
    



    print(days[1])     --> Sunday
    days[2] = "Noday"
    stdin:1: attempt to update a read-only table

14 - The Environment
Lua keeps all its global variables in a regular table, called the environment. (To be more precise, 
Lua keeps its "global" variables in several environments, but we will ignore this multiplicity for a 
while.) One advantage of this structure is that it simplifies the internal implementation of Lua, 
because there is no need for a different data structure for global variables. The other (actually the 
main) advantage is that we can manipulate this table as any other table. To facilitate such 
manipulations, Lua stores the environment itself in a global variable _G. (Yes, _G._G is equal to 
_G.) For instance, the following code prints the names of all global variables defined in the current 
environment: 
    for n in pairs(_G) do print(n) end

In this chapter, we will see several useful techniques to manipulate the environment. 

14.1 - Accessing Global Variables with Dynamic Names
Usually, assignment is enough for getting and setting global variables. However, often we need 
some form of meta-programming, such as when we need to manipulate a global variable whose 
name is stored in another variable, or somehow computed at run time. To get the value of this 
variable, many programmers are tempted to write something like 
    loadstring("value = " .. varname)()

or 
    value = loadstring("return " .. varname)()

If varname is x, for instance, the concatenation will result in "return x" (or "value = x", 
with the first form), which when run achieves the desired result. However, such codes involve the 
creation and compilation of a new chunk and lots of extra work. You can accomplish the same 
effect with the following code, which is more than an order of magnitude more efficient than the 
previous one: 
    value = _G[varname]

Because the environment is a regular table, you can simply index it with the desired key (the 
variable name). 

In a similar way, you can assign to a global variable whose name is computed dynamically, writing 
_G[varname] = value. Beware, however: Some programmers get a little excited with these 
functions and end up writing code like _G["a"] = _G["var1"], which is just a complicated 
way to write a = var1. 

A generalization of the previous problem is to allow fields in a dynamic name, such as 
"io.read" or "a.b.c.d". We solve this problem with a loop, which starts at _G and evolves 
field by field: 
    function getfield (f)
      local v = _G    -- start with the table of globals



      for w in string.gfind(f, "[%w_]+") do
        v = v[w]
      end
      return v
    end

We rely on gfind, from the string library, to iterate over all words in f (where "word" is a 
sequence of one or more alphanumeric characters and underscores). 

The corresponding function to set fields is a little more complex. An assignment like 
    a.b.c.d.e = v

is exactly equivalent to 
    local temp = a.b.c.d
    temp.e = v

That is, we must retrieve up to the last name; we must handle the last field separately. The new 
setfield function also creates intermediate tables in a path when they do not exist: 
    function setfield (f, v)
      local t = _G    -- start with the table of globals
      for w, d in string.gfind(f, "([%w_]+)(.?)") do
        if d == "." then      -- not last field?
          t[w] = t[w] or {}   -- create table if absent
          t = t[w]            -- get the table
        else                  -- last field
          t[w] = v            -- do the assignment
        end
      end
    end

This new pattern captures the field name in variable w and an optional following dot in variable d. 
If a field name is not followed by a dot then it is the last name. (We will discuss pattern matching at 
great length in Chapter 20.) 

With the previous functions, the call 
    setfield("t.x.y", 10)

creates a global table t, another table t.x, and assigns 10 to t.x.y: 
    print(t.x.y)     --> 10
    print(getfield("t.x.y"))   --> 10

14.2 - Declaring Global Variables
Global variables in Lua do not need declarations. Although this is handy for small programs, in 
larger programs a simple typo can cause bugs that are difficult to find. However, we can change that 
behavior if we like. Because Lua keeps its global variables in a regular table, we can use metatables 
to change its behavior when accessing global variables. 

A first approach is as follows: 
    setmetatable(_G, {
      __newindex = function (_, n)
        error("attempt to write to undeclared variable "..n, 2)
      end,
      __index = function (_, n)
        error("attempt to read undeclared variable "..n, 2)



      end,
    })

After that code, any attempt to access a non-existent global variable will trigger an error: 
    > a = 1
    stdin:1: attempt to write to undeclared variable a

But how do we declare new variables? With rawset, which bypasses the metamethod: 
    function declare (name, initval)
      rawset(_G, name, initval or false)
    end

The or with false ensures that the new global always gets a value different from nil. Notice that you 
should define this function before installing the access control, otherwise you get an error: After all, 
you are trying to create a new global, declare. With that function in place, you have complete 
control over your global variables: 
    > a = 1
    stdin:1: attempt to write to undeclared variable a
    > declare"a"
    > a = 1             -- OK

But now, to test whether a variable exists, we cannot simply compare it to nil; if it is nil, the access 
will throw an error. Instead, we use rawget, which avoids the metamethod: 
    if rawget(_G, var) == nil then
      -- `var' is undeclared
      ...
    end

It is not difficult to change that control to allow global variables with nil value. All we need is an 
auxiliary table that keeps the names of declared variables. Whenever a metamethod is called, it 
checks in that table whether the variable is undeclared or not. The code may be like this: 
    local declaredNames = {}
    function declare (name, initval)
      rawset(_G, name, initval)
      declaredNames[name] = true
    end
    setmetatable(_G, {
      __newindex = function (t, n, v)
        if not declaredNames[n] then
          error("attempt to write to undeclared var. "..n, 2)
        else
          rawset(t, n, v)   -- do the actual set
        end
      end,
      __index = function (_, n)
        if not declaredNames[n] then
          error("attempt to read undeclared var. "..n, 2)
        else
          return nil
        end
      end,
    })

For both solutions, the overhead is negligible. With the first solution, the metamethods are never 
called during normal operation. In the second, they may be called, but only when the program 
accesses a variable holding a nil. 



14.3 - Non-Global Environments
One of the problems with the environment is that it is global. Any modification you do on it affects 
all parts of your program. For instance, when you install a metatable to control global access, your 
whole program must follow the guidelines. If you want to use a library that uses global variables 
without declaring them, you are in bad luck. 

Lua 5.0 ameliorates this problem by allowing each function to have its own environment. That may 
sound strange at first; after all, the goal of a table of global variables is to be global. However, in 
Section 15.4 we will see that this facility allows several interesting constructions, where global 
values are still available everywhere. 

You can change the environment of a function with the setfenv function (set function 
environment). It receives the function and the new environment. Instead of the function itself, you 
can also give a number, meaning the active function at that given stack level. Number 1 means the 
current function, number 2 means the function calling the current function (which is handy to write 
auxiliary functions that change the environment of their caller), and so on. 

A naive first attempt to use setfenv fails miserably. The code 
    a = 1   -- create a global variable
    -- change current environment to a new empty table
    setfenv(1, {})
    print(a)

results in 
    stdin:5: attempt to call global `print' (a nil value)

(You must run that code in a single chunk. If you enter it line by line in interactive mode, each line 
is a different function and the call to setfenv only affects its own line.) Once you change your 
environment, all global accesses will use this new table. If it is empty, you lost all your global 
variables, even _G. So, you should first populate it with some useful values, such as the old 
environment: 
    a = 1   -- create a global variable
    -- change current environment
    setfenv(1, {_G = _G})
    _G.print(a)      --> nil
    _G.print(_G.a)   --> 1

Now, when you access the "global" _G, its value is the old environment, wherein you will find the 
field print. 

You can populate your new environment using inheritance also: 
    a = 1
    local newgt = {}        -- create new environment
    setmetatable(newgt, {__index = _G})
    setfenv(1, newgt)    -- set it
    print(a)          --> 1

In this code, the new environment inherits both print and a from the old one. Nevertheless, any 
assignment goes to the new table. There is no danger of changing a really global variable by 
mistake, although you still can change them through _G: 
    -- continuing previous code



    a = 10
    print(a)      --> 10
    print(_G.a)   --> 1
    _G.a = 20
    print(_G.a)   --> 20

When you create a new function, it inherits its environment from the function creating it. Therefore, 
if a chunk changes its own environment, all functions it defines afterward will share this same 
environment. This is a useful mechanism for creating namespaces, as we will see in the next 
chapter. 

15 - Packages
Many languages provide mechanisms to organize their space of global names, such as modules in 
Modula, packages in Java and Perl, or namespaces in C++. Each of these mechanisms has different 
rules regarding the use of elements declared inside a package, visibility, and other details. 
Nevertheless, all of them provide a basic mechanism to avoid collision among names defined in 
different libraries. Each library creates its own namespace and names defined inside this namespace 
do not interfere with names in other namespaces. 

Lua does not provide any explicit mechanism for packages. However, we can implement them 
easily with the basic mechanisms that the language provides. The main idea is to represent each 
package by a table, as the basic libraries do. 

An obvious benefit of using tables to implement packages is that we can manipulate packages like 
any other table and use the whole power of Lua to create extra facilities. In most languages, 
packages are not first-class values (that is, they cannot be stored in variables, passed as arguments 
to functions, etc.), so these languages need special mechanisms for each extra trick you may do with 
a package. 

In Lua, although we always represent packages as tables, there are several different methods to 
write a package. In this chapter, we cover some of these methods. 

15.1 - The Basic Approach
A simple way to define a package is to write the package name as a prefix for each object in the 
package. For instance, suppose we are writing a library to manipulate complex numbers. We 
represent each complex number as a table, with fields r (real part) and i (imaginary part). We 
declare all our new operations in another table, which acts as a new package: 
    complex = {}
    
    function complex.new (r, i) return {r=r, i=i} end
    
    -- defines a constant `i'
    complex.i = complex.new(0, 1)
    
    function complex.add (c1, c2)
      return complex.new(c1.r + c2.r, c1.i + c2.i)
    end
    
    function complex.sub (c1, c2)
      return complex.new(c1.r - c2.r, c1.i - c2.i)
    end



    
    function complex.mul (c1, c2)
      return complex.new(c1.r*c2.r - c1.i*c2.i,
                         c1.r*c2.i + c1.i*c2.r)
    end
    
    function complex.inv (c)
      local n = c.r^2 + c.i^2
      return complex.new(c.r/n, -c.i/n)
    end
    
    return complex

This library defines one single global name, complex. All other definitions go inside this table. 

With this definition, we can use any complex operation qualifying the operation name, like this: 
    c = complex.add(complex.i, complex.new(10, 20))

This use of tables for packages does not provide exactly the same functionality as provided by real 
packages. First, we must explicitly put the package name in every function definition. Second, a 
function that calls another function inside the same package must qualify the name of the called 
function. We can ameliorate those problems using a fixed local name for the package (P, for 
instance), and then assigning this local to the final name of the package. Following this guideline, 
we would write our previous definition like this: 
    local P = {}
    complex = P           -- package name
    
    P.i = {r=0, i=1}
    function P.new (r, i) return {r=r, i=i} end
    
    function P.add (c1, c2)
      return P.new(c1.r + c2.r, c1.i + c2.i)
    end
    
       ...

Whenever a function calls another function inside the same package (or whenever it calls itself 
recursively), it still needs to prefix the name. At least, the connection between the two functions 
does not depend on the package name anymore. Moreover, there is only one place in the whole 
package where we write the package name. 

Maybe you noticed that the last statement in the package was 
    return complex

This return is not necessary, because the package is already assigned to a global variable 
(complex). Nevertheless, we consider a good practice that a package returns itself when it opens. 
The extra return costs nothing, and allows alternative ways to handle the package. 

15.2 - Privacy
Sometimes, a package exports all its names; that is, any client of the package can use them. Usually, 
however, it is useful to have private names in a package, that is, names that only the package itself 
can use. A convenient way to do that in Lua is to define those private names as local variables. For 
instance, let us add to our example a private function that checks whether a value is a valid complex 
number. Our example now looks like this: 



    local P = {}
    complex = P
    
    local function checkComplex (c)
      if not ((type(c) == "table") and
         tonumber(c.r) and tonumber(c.i)) then
        error("bad complex number", 3)
      end
    end
    
    function P.add (c1, c2)
      checkComplex(c1);
      checkComplex(c2);
      return P.new(c1.r + c2.r, c1.i + c2.i)
    end
    
      ...
    
    return P

What are the pros and cons of this approach? All names in a package live in a separate namespace. 
Each entity in a package is clearly marked as public or private. Moreover, we have real privacy: 
Private entities are inaccessible outside the package. A drawback of this approach is its verbosity 
when accessing other public entities inside the same package, as every access still needs the prefix 
P. A bigger problem is that we have to change the calls whenever we change the status of a function 
from private to public (or from public to private). 

There is an interesting solution to both problems at once. We can declare all functions in our 
package as local and later put them in the final table to be exported. Following this approach, our 
complex package would be like this: 
    local function checkComplex (c)
      if not ((type(c) == "table")
         and tonumber(c.r) and tonumber(c.i)) then
        error("bad complex number", 3)
      end
    end
    
    local function new (r, i) return {r=r, i=i} end
    
    local function add (c1, c2)
      checkComplex(c1);
      checkComplex(c2);
      return new(c1.r + c2.r, c1.i + c2.i)
    end
    
      ...
    
    complex = {
      new = new,
      add = add,
      sub = sub,
      mul = mul,
      div = div,
    }

Now we do not need to prefix any calls, so that calls to exported and private functions are equal. 
There is a simple list at the end of the package that defines explicitly which names to export. Most 
people find more natural to have this list at the beginning of the package, but we cannot put the list 
at the top, because we must define the local functions first. 



15.3 - Packages and Files
Typically, when we write a package, we put all its code in a single file. Then, to open or import a 
package (that is, to make it available) we just execute that file. For instance, if we have a file 
complex.lua with the definition of our complex package, the command require 
"complex" will open the package. Remember that require avoids loading the same package 
multiple times. 

A recurring issue is the relationship between the file name and the package name. Of course, it is a 
good idea to relate them, because require works with files, not with packages. One solution is to 
name the file after the package, followed by some known extension. Lua does not fix any extension; 
it is up to your path to do that. For instance, if your path includes a component like 
"/usr/local/lualibs/?.lua", than the package complex may live in a complex.lua 
file. 

Some people prefer the reverse, to name the package after the file name, dynamically. That is, if you 
rename the file, the package is renamed, too. This solution gives you more flexibility. For instance, 
if you get two different packages with the same name, you do not have to change any of them, just 
rename one file. To implement this naming scheme in Lua, we use the _REQUIREDNAME variable. 
Remember that, when require loads a file, it defines that variable with the virtual file name. So, 
you can write something like the following in your package: 
    local P = {}   -- package
    if _REQUIREDNAME == nil then
      complex = P
    else
      _G[_REQUIREDNAME] = P
    end

The test allows us to use the package without require. If _REQUIREDNAME is not defined, we 
use a fixed name for the package (complex, in the example). Otherwise, the package registers 
itself with the virtual file name, whatever it is. If a user puts the library in file cpx.lua and runs 
require"cpx", the package loads itself in table cpx. If another user moves the library to file 
cpx_v1.lua and runs require"cpx_v1", the package loads itself in table cpx_v1. 

15.4 - Using the Global Table
One drawback of all these methods to create packages is that they call for special attention from the 
programmer. It is all too easy to forget a local in a declaration, for instance. Metamethods in the 
table of global variables offer some interesting alternative techniques for creating packages. The 
common part in all these techniques is the use of an exclusive environment for the package. This is 
easily done: If we change the environment of the package's main chunk, all functions it creates will 
share this new environment. 

The simplest technique does little more than that. Once the package has an exclusive environment, 
not only all its functions share this table, but also all its global variables go to this table. Therefore, 
we can declare all public functions as global variables and they will go to a separate table 
automatically. All the package has to do is to register this table as the package name. The next code 
fragment illustrates this technique for the complex library: 
    local P = {}
    complex = P



    setfenv(1, P)

Now, when we declare function add, it goes to complex.add: 
    function add (c1, c2)
      return new(c1.r + c2.r, c1.i + c2.i)
    end

Moreover, we can call other functions from this package without any prefix. For instance, add gets 
new from its environment, that is, it gets complex.new. 

This method offers a good support for packages, with little extra work on the programmer. It needs 
no prefixes at all. There is no difference between calling an exported and a private function. If the 
programmer forgets a local, she does not pollute the global namespace; instead, only a private 
function becomes public. Moreover, we can use it together with the techniques from the previous 
section for package names: 
    local P = {}   -- package
    if _REQUIREDNAME == nil then
      complex = P
    else
      _G[_REQUIREDNAME] = P
    end
    setfenv(1, P)

What is missing, of course, is access to other packages. Once we make the empty table P our 
environment, we lose access to all previous global variables. There are several solutions to this, 
each with its pros and cons. 

The simplest solution is inheritance, as we saw earlier: 
    local P = {}   -- package
    setmetatable(P, {__index = _G})
    setfenv(1, P)

(You must call setmetatable before calling setfenv; can you tell why?) With this 
construction, the package has direct access to any global identifier, but it pays a small overhead for 
each access. A funny consequence of this solution is that, conceptually, your package now contains 
all global variables. For instance, someone using your package may call the standard sine function 
writing complex.math.sin(x). (Perl's package system has this peculiarity, too.) 

Another quick method of accessing other packages is to declare a local that holds the old 
environment: 
    local P = {}
    pack = P
    local _G = _G
    setfenv(1, P)

Now you must prefix any access to external names with _G., but you get faster access, because 
there is no metamethod involved. Unlike inheritance, this method gives you write access to the old 
environment; whether this is good or bad is debatable, but sometimes you may need this flexibility. 

A more disciplined approach is to declare as locals only the functions you need, or at most the 
packages you need: 
    local P = {}
    pack = P
    
    -- Import Section:
    -- declare everything this package needs from outside



    local sqrt = math.sqrt
    local io = io
    
    -- no more external access after this point
    setfenv(1, P)

This technique demands more work, but it documents your package dependencies better. It also 
results in faster code than the previous schemes. 

15.5 - Other Facilities
As I said earlier, the use of tables to implement packages allows us to use the whole power of Lua 
to manipulate them. There are unlimited possibilities. Here I will give only a few suggestions. 

We do not need to define all public items of a package together. For instance, we can add a new 
item to our complex package in a separate chunk: 
    function complex.div (c1, c2)
      return complex.mul(c1, complex.inv(c2))
    end

(But notice that the private part is restricted to one file, which I think is a good thing.) Conversely, 
we can define more than one package in the same file. All we have to do is to enclose each one 
inside a do block, so that its local variables are restricted to that block. 

Outside the package, if we are going to use some operations often, we can give them local names: 
    local add, i = complex.add, complex.i
    
    c1 = add(complex.new(10, 20), i)

Or else, if we do not want to write the package name over and over, we can give a shorter local 
name to the package itself: 
    local C = complex
    c1 = C.add(C.new(10, 20), C.i)

It is easy to write a function that unpacks a package, putting all its names into the global 
namespace: 
    function openpackage (ns)
      for n,v in pairs(ns) do _G[n] = v end
    end
    
    openpackage(complex)
    c1 = mul(new(10, 20), i)

If you are afraid of name clashes when opening a package, you can check the name before the 
assignment: 
    function openpackage (ns)
      for n,v in pairs(ns) do
        if _G[n] ~= nil then
          error("name clash: " .. n .. " is already defined")
        end
        _G[n] = v
      end
    end



Because packages themselves are tables, we can even nest packages; that is, we can create a 
package inside another one. However, this facility is seldom necessary. 

Another interesting facility is autoload, which only loads a function if the function is actually used 
by the program. When we load an autoload package, it creates an empty table to represent the 
package and sets the __index metamethod of the table to do the autoload. Then, when we call any 
function that is not yet loaded, the __index metamethod is invoked to load it. Subsequent calls 
find the function already loaded; therefore, they do not activate the metamethod. 

A simple way to implement autoload can be as follows. Each function is defined in an auxiliary file. 
(There can be more than one function in each file.) Each of these files defines its functions in a 
standard way, for instance like here: 
    function pack1.foo ()
      ...
    end
    
    function pack1.goo ()
      ...
    end

However, the file does not create the package, because the package already exists when the function 
is loaded. 

In the main package we define an auxiliary table that describes where we can find each function: 
    local location = {
      foo = "/usr/local/lua/lib/pack1_1.lua",
      goo = "/usr/local/lua/lib/pack1_1.lua",
      foo1 = "/usr/local/lua/lib/pack1_2.lua",
      goo1 = "/usr/local/lua/lib/pack1_3.lua",
    }

Then we create the package and define its metamethod: 
    pack1 = {}
    
    setmetatable(pack1, {__index = function (t, funcname)
      local file = location[funcname]
      if not file then
        error("package pack1 does not define " .. funcname)
      end
      assert(loadfile(file))()     -- load and run definition
      return t[funcname]           -- return the function
    end})
    
    return pack1

After loading this package, the first time the program executes pack1.foo() it will invoke that 
__index metamethod, which is quite simple. It checks that the function has a corresponding file 
and loads that file. The only subtlety is that it must not only load the file, but also return the 
function as the result of the access. 

Because the entire system is written in Lua, it is easy to change its behavior. For instance, the 
functions may be defined in C, with the metamethod using loadlib to load them. Or we can set a 
metamethod in the global table to autoload entire packages. The possibilities are endless. 



16 - Object-Oriented Programming
A table in Lua is an object in more than one sense. Like objects, tables have a state. Like objects, 
tables have an identity (a selfness) that is independent of their values; specifically, two objects 
(tables) with the same value are different objects, whereas an object can have different values at 
different times, but it is always the same object. Like objects, tables have a life cycle that is 
independent of who created them or where they were created. 

Objects have their own operations. Tables also can have operations: 
    Account = {balance = 0}
    function Account.withdraw (v)
      Account.balance = Account.balance - v
    end

This definition creates a new function and stores it in field withdraw of the Account object. 
Then, we can call it as 
    Account.withdraw(100.00)

This kind of function is almost what we call a method. However, the use of the global name 
Account inside the function is a bad programming practice. First, this function will work only for 
this particular object. Second, even for this particular object the function will work only as long as 
the object is stored in that particular global variable; if we change the name of this object, 
withdraw does not work any more: 
    a = Account; Account = nil
    a.withdraw(100.00)   -- ERROR!

Such behavior violates the previous principle that objects have independent life cycles. 

A more flexible approach is to operate on the receiver of the operation. For that, we would have to 
define our method with an extra parameter, which tells the method on which object it has to operate. 
This parameter usually has the name self or this: 
    function Account.withdraw (self, v)
      self.balance = self.balance - v
    end

Now, when we call the method we have to specify on which object it has to operate: 
    a1 = Account; Account = nil
    ...
    a1.withdraw(a1, 100.00)   -- OK

With the use of a self parameter, we can use the same method for many objects: 
    a2 = {balance=0, withdraw = Account.withdraw}
    ...
    a2.withdraw(a2, 260.00)

This use of a self parameter is a central point in any object-oriented language. Most OO languages 
have this mechanism partly hidden from the programmer, so that she does not have to declare this 
parameter (although she still can use the name self or this inside a method). Lua can also hide this 
parameter, using the colon operator. We can rewrite the previous method definition as 
    function Account:withdraw (v)
      self.balance = self.balance - v
    end



and the method call as 
    a:withdraw(100.00)

The effect of the colon is to add an extra hidden parameter in a method definition and to add an 
extra argument in a method call. The colon is only a syntactic facility, although a convenient one; 
there is nothing really new here. We can define a function with the dot syntax and call it with the 
colon syntax, or vice-versa, as long as we handle the extra parameter correctly: 
    Account = { balance=0,
                withdraw = function (self, v)
                             self.balance = self.balance - v
                           end
              }
    
    function Account:deposit (v)
      self.balance = self.balance + v
    end
    
    Account.deposit(Account, 200.00)
    Account:withdraw(100.00)

Now our objects have an identity, a state, and operations over this state. They still lack a class 
system, inheritance, and privacy. Let us tackle the first problem: How can we create several objects 
with similar behavior? Specifically, how can we create several accounts? 

16.1 - Classes
A class works as a mold for the creation of objects. Several OO languages offer the concept of 
class. In such languages, each object is an instance of a specific class. Lua does not have the 
concept of class; each object defines its own behavior and has a shape of its own. Nevertheless, it is 
not difficult to emulate classes in Lua, following the lead from prototype-based languages, such as 
Self and NewtonScript. In those languages, objects have no classes. Instead, each object may have a 
prototype, which is a regular object where the first object looks up any operation that it does not 
know about. To represent a class in such languages, we simply create an object to be used 
exclusively as a prototype for other objects (its instances). Both classes and prototypes work as a 
place to put behavior to be shared by several objects. 

In Lua, it is trivial to implement prototypes, using the idea of inheritance that we saw in the 
previous chapter. More specifically, if we have two objects a and b, all we have to do to make b a 
prototype for a is 
    setmetatable(a, {__index = b})

After that, a looks up in b for any operation that it does not have. To see b as the class of object a is 
not much more than a change in terminology. 

Let us go back to our example of a bank account. To create other accounts with behavior similar to 
Account, we arrange for these new objects to inherit their operations from Account, using the 
__index metamethod. Note a small optimization, that we do not need to create an extra table to be 
the metatable of the account objects; we can use the Account table itself for that purpose: 
    function Account:new (o)
      o = o or {}   -- create object if user does not provide one
      setmetatable(o, self)
      self.__index = self
      return o



    end

(When we call Account:new, self is equal to Account; so we could have used Account 
directly, instead of self. However, the use of self will fit nicely when we introduce class 
inheritance, in the next section.) After that code, what happens when we create a new account and 
call a method on it? 
    a = Account:new{balance = 0}
    a:deposit(100.00)

When we create this new account, a will have Account (the self in the call Account:new) as its 
metatable. Then, when we call a:deposit(100.00), we are actually calling a.deposit(a, 
100.00) (the colon is only syntactic sugar). However, Lua cannot find a "deposit" entry in 
table a; so, it looks into the metatable's __index entry. The situation now is more or less like this: 
    getmetatable(a).__index.deposit(a, 100.00)

The metatable of a is Account and Account.__index is also Account (because the new 
method did self.__index = self). Therefore, we can rewrite the previous expression as 
    Account.deposit(a, 100.00)

That is, Lua calls the original deposit function, but passing a as the self parameter. So, the new 
account a inherited the deposit function from Account. By the same mechanism, it can inherit 
all fields from Account. 

The inheritance works not only for methods, but also for other fields that are absent in the new 
account. Therefore, a class provides not only methods, but also default values for its instance fields. 
Remember that, in our first definition of Account, we provided a field balance with value 0. 
So, if we create a new account without an initial balance, it will inherit this default value: 
    b = Account:new()
    print(b.balance)    --> 0

When we call the deposit method on b, it runs the equivalent of 
    b.balance = b.balance + v

(because self is b). The expression b.balance evaluates to zero and an initial deposit is 
assigned to b.balance. The next time we ask for this value, the index metamethod is not invoked 
(because now b has its own balance field). 

16.2 - Inheritance
Because classes are objects, they can get methods from other classes, too. That makes inheritance 
(in the usual object-oriented meaning) quite easy to implement in Lua. 

Let us assume we have a base class like Account: 
    Account = {balance = 0}
    
    function Account:new (o)
      o = o or {}
      setmetatable(o, self)
      self.__index = self
      return o
    end



    
    function Account:deposit (v)
      self.balance = self.balance + v
    end
    
    function Account:withdraw (v)
      if v > self.balance then error"insufficient funds" end
      self.balance = self.balance - v
    end

From that class, we want to derive a subclass SpecialAccount, which allows the customer to 
withdraw more than his balance. We start with an empty class that simply inherits all its operations 
from its base class: 
    SpecialAccount = Account:new()

Up to now, SpecialAccount is just an instance of Account. The nice thing happens now: 
    s = SpecialAccount:new{limit=1000.00}

SpecialAccount inherits new from Account like any other method. This time, however, when 
new executes, the self parameter will refer to SpecialAccount. Therefore, the metatable of s 
will be SpecialAccount, whose value at index __index is also SpecialAccount. So, s 
inherits from SpecialAccount, which inherits from Account. When we evaluate 
    s:deposit(100.00)

Lua cannot find a deposit field in s, so it looks into SpecialAccount; it cannot find a 
deposit field there, too, so it looks into Account and there it finds the original implementation 
for a deposit. 

What makes a SpecialAccount special is that it can redefine any method inherited from its 
superclass. All we have to do is to write the new method: 
    function SpecialAccount:withdraw (v)
      if v - self.balance >= self:getLimit() then
        error"insufficient funds"
      end
      self.balance = self.balance - v
    end
    
    function SpecialAccount:getLimit ()
      return self.limit or 0
    end

Now, when we call s:withdraw(200.00), Lua does not go to Account, because it finds the 
new withdraw method in SpecialAccount first. Because s.limit is 1000.00 (remember 
that we set this field when we created s), the program does the withdrawal, leaving s with a 
negative balance. 

An interesting aspect of OO in Lua is that you do not need to create a new class to specify a new 
behavior. If only a single object needs a specific behavior, you can implement that directly in the 
object. For instance, if the account s represents some special client whose limit is always 10% of 
her balance, you can modify only this single account: 
    function s:getLimit ()
      return self.balance * 0.10
    end

After that declaration, the call s:withdraw(200.00) runs the withdraw method from 



SpecialAccount, but when that method calls self:getLimit, it is this last definition that it 
invokes. 

16.3 - Multiple Inheritance
Because objects are not primitive in Lua, there are several ways to do object-oriented programming 
in Lua. The method we saw previously, using the index metamethod, is probably the best 
combination of simplicity, performance, and flexibility. Nevertheless, there are other 
implementations, which may be more appropriate to some particular cases. Here we will see an 
alternative implementation that allows multiple inheritance in Lua. 

The key for this implementation is the use of a function for the metafield __index. Remember 
that, when a table's metatable has a function in the field __index, Lua will call that function 
whenever it cannot find a key in the original table. Then, __index can look up for the missing key 
in how many parents it wants. 

Multiple inheritance means that a class may have more than one superclass. Therefore, we cannot 
use a class method to create subclasses. Instead, we will define a specific function for that purpose, 
createClass, which has as arguments the superclasses of the new class. This function creates a 
table to represent the new class, and sets its metatable with an __index metamethod that does the 
multiple inheritance. Despite the multiple inheritance, each instance still belongs to one single class, 
where it looks for all its methods. Therefore, the relationship between classes and superclasses is 
different from the relationship between classes and instances. Particularly, a class cannot be the 
metatable for its instances and its own metatable at the same time. In the following implementation, 
we keep a class as the metatable for its instances and create another table to be the class' metatable. 
    -- look up for `k' in list of tables `plist'
    local function search (k, plist)
      for i=1, table.getn(plist) do
        local v = plist[i][k]     -- try `i'-th superclass
        if v then return v end
      end
    end
    
    function createClass (...)
      local c = {}        -- new class
    
      -- class will search for each method in the list of its
      -- parents (`arg' is the list of parents)
      setmetatable(c, {__index = function (t, k)
        return search(k, arg)
      end})
    
      -- prepare `c' to be the metatable of its instances
      c.__index = c
    
      -- define a new constructor for this new class
      function c:new (o)
        o = o or {}
        setmetatable(o, c)
        return o
      end
    
      -- return new class
      return c
    end



Let us illustrate the use of createClass with a small example. Assume our previous class 
Account and another class, Named, with only two methods, setname and getname: 
    Named = {}
    function Named:getname ()
      return self.name
    end
    
    function Named:setname (n)
      self.name = n
    end

To create a new class NamedAccount that is a subclass of both Account and Named, we simply 
call createClass: 
    NamedAccount = createClass(Account, Named)

To create and to use instances, we do as usual: 
    account = NamedAccount:new{name = "Paul"}
    print(account:getname())     --> Paul

Now let us follow what happens in the last statement. Lua cannot find the field "getname" in 
account. So, it looks for the field __index of account's metatable, which is 
NamedAccount. But NamedAccount also cannot provide a "getname" field, so Lua looks for 
the field __index of NamedAccount's metatable. Because this field contains a function, Lua 
calls it. This function then looks for "getname" first into Account, without success, and then 
into Named, where it finds a non-nil value, which is the final result of the search. 

Of course, due to the underlying complexity of this search, the performance of multiple inheritance 
is not the same as single inheritance. A simple way to improve this performance is to copy inherited 
methods into the subclasses. Using this technique, the index metamethod for classes would be like 
this: 
      ...
      setmetatable(c, {__index = function (t, k)
        local v = search(k, arg)
        t[k] = v       -- save for next access
        return v
      end})
      ...

With this trick, accesses to inherited methods are as fast as to local methods (except for the first 
access). The drawback is that it is difficult to change method definitions after the system is running, 
because these changes do not propagate down the hierarchy chain. 

16.4 - Privacy
Many people consider privacy to be an integral part of an object-oriented language; the state of each 
object should be its own internal affair. In some OO languages, such as C++ and Java, you can 
control whether an object field (also called an instance variable) or a method is visible outside the 
object. Other languages, such as Smalltalk, make all variables private and all methods public. The 
first OO language, Simula, did not offer any kind of protection. 

The main design for objects in Lua, which we have shown previously, does not offer privacy 
mechanisms. Partly, this is a consequence of our use of a general structure (tables) to represent 



objects. But this also reflects some basic design decisions behind Lua. Lua is not intended for 
building huge programs, where many programmers are involved for long periods. Quite the 
opposite, Lua aims at small to medium programs, usually part of a larger system, typically 
developed by one or a few programmers, or even by non programmers. Therefore, Lua avoids too 
much redundancy and artificial restrictions. If you do not want to access something inside an object, 
just do not do it. 
Nevertheless, another aim of Lua is to be flexible, offering to the programmer meta-mechanisms 
through which she can emulate many different mechanisms. Although the basic design for objects 
in Lua does not offer privacy mechanisms, we can implement objects in a different way, so as to 
have access control. Although this implementation is not used frequently, it is instructive to know 
about it, both because it explores some interesting corners of Lua and because it can be a good 
solution for other problems. 

The basic idea of this alternative design is to represent each object through two tables: one for its 
state; another for its operations, or its interface. The object itself is accessed through the second 
table, that is, through the operations that compose its interface. To avoid unauthorized access, the 
table that represents the state of an object is not kept in a field of the other table; instead, it is kept 
only in the closure of the methods. For instance, to represent our bank account with this design, we 
could create new objects running the following factory function: 
    function newAccount (initialBalance)
      local self = {balance = initialBalance}
    
      local withdraw = function (v)
                         self.balance = self.balance - v
                       end
    
      local deposit = function (v)
                        self.balance = self.balance + v
                      end
    
      local getBalance = function () return self.balance end
    
      return {
        withdraw = withdraw,
        deposit = deposit,
        getBalance = getBalance
      }
    end

First, the function creates a table to keep the internal object state and stores it in the local variable 
self. Then, the function creates closures (that is, instances of nested functions) for each of the 
methods of the object. Finally, the function creates and returns the external object, which maps 
method names to the actual method implementations. The key point here is that those methods do 
not get self as an extra parameter; instead, they access self directly. Because there is no extra 
argument, we do not use the colon syntax to manipulate such objects. The methods are called just 
like any other function: 
    acc1 = newAccount(100.00)
    acc1.withdraw(40.00)
    print(acc1.getBalance())     --> 60

This design gives full privacy to anything stored in the self table. After newAccount returns, 
there is no way to gain direct access to that table. We can only access it through the functions 
created inside newAccount. Although our example puts only one instance variable into the 
private table, we can store all private parts of an object in that table. We can also define private 
methods: They are like public methods, but we do not put them in the interface. For instance, our 



accounts may give an extra credit of 10% for users with balances above a certain limit, but we do 
not want the users to have access to the details of this computation. We can implement this as 
follows: 
    function newAccount (initialBalance)
      local self = {
        balance = initialBalance,
        LIM = 10000.00,
      }
    
      local extra = function ()
        if self.balance > self.LIM then
          return self.balance*0.10
        else
          return 0
        end
      end
    
      local getBalance = function ()
        return self.balance + self.extra()
      end
    
      ...

Again, there is no way for any user to access the extra function directly. 

16.5 - The Single-Method Approach
A particular case of the previous approach for OO programming occurs when an object has a single 
method. In such cases, we do not need to create an interface table; instead, we can return this single 
method as the object representation. If this sounds a little weird, it is worth remembering Section 
7.1, where we saw how to construct iterator functions that keep state as closures. An iterator that 
keeps state is nothing more than a single-method object. 

Another interesting case of single-method objects occurs when this single-method is actually a 
dispatch method that performs different tasks based on a distinguished argument. A possible 
implementation for such object is as follows: 
    function newObject (value)
      return function (action, v)
        if action == "get" then return value
        elseif action == "set" then value = v
        else error("invalid action")
        end
      end
    end

Its use is straightforward: 
    d = newObject(0)
    print(d("get"))    --> 0
    d("set", 10)
    print(d("get"))    --> 10

This unconventional implementation for objects is quite effective. The syntax d("set",10), 
although peculiar, is only two characters longer than the more conventional d:set(10). Each 
object uses one single closure, which is cheaper than one table. There is no inheritance, but we have 
full privacy: The only way to access an object state is through its sole method. 



Tcl/Tk uses a similar approach for its widgets. The name of a widget in Tk denotes a function (a 
widget command) that can perform all kinds of operations over the widget. 

17 - Weak Tables
Lua does automatic memory management. A program only creates objects (tables, functions, etc.); 
there is no function to delete objects. Lua automatically deletes objects that become garbage, using 
garbage collection. That frees you from most of the burden of memory management and, more 
important, frees you from most of the bugs related to that activity, such as dangling pointers and 
memory leaks. 

Unlike some other collectors, Lua's garbage collector has no problems with cycles. You do not need 
to take any special action when using cyclic data structures; they are collected like any other data. 
Nevertheless, sometimes even the smarter collector needs your help. No garbage collector allows 
you to forget all worries about memory management. 

A garbage collector can collect only what it can be sure is garbage; it cannot know what you 
consider garbage. A typical example is a stack, implemented with an array and an index to the top. 
You know that the valid part of the array goes only up to the top, but Lua does not. If you pop an 
element by simply decrementing the top, the object left in the array is not garbage for Lua. 
Similarly, any object stored in a global variable is not garbage for Lua, even if your program will 
never use it again. In both cases, it is up to you (i.e., your program) to assign nil to these positions 
so that they do not lock an otherwise free object. 

However, simply cleaning your references is not always enough. Some constructions need extra 
collaboration between you and the collector. A typical example happens when you want to keep a 
collection of all live objects of some kind (e.g., files) in your program. That seems a simple task: All 
you have to do is to insert each new object into the collection. However, once the object is inside 
the collection, it will never be collected! Even if no one else points to it, the collection does. Lua 
cannot know that this reference should not prevent the reclamation of the object, unless you tell Lua 
about that. 

Weak tables are the mechanism that you use to tell Lua that a reference should not prevent the 
reclamation of an object. A weak reference is a reference to an object that is not considered by the 
garbage collector. If all references pointing to an object are weak, the object is collected and 
somehow these weak references are deleted. Lua implements weak references as weak tables: A 
weak table is a table where all references are weak. That means that, if an object is only held inside 
weak tables, Lua will collect the object eventually. 

Tables have keys and values and both may contain any kind of object. Under normal circumstances, 
the garbage collector does not collect objects that appear as keys or as values of an accessible table. 
That is, both keys and values are strong references, as they prevent the reclamation of objects to 
which they refer. In a weak table, keys and values may be weak. That means that there are three 
kinds of weak tables: tables with weak keys, tables with weak values, and fully weak tables, where 
both keys and values are weak. Irrespective of the table kind, when a key or a value is collected the 
whole entry disappears from the table. 

The weakness of a table is given by the field __mode of its metatable. The value of this field, when 
present, should be a string: If the string contains the letter `k´ (lower case), the keys in the table are 
weak; if the string contains the letter `v´ (lower case), the values in the table are weak. The 
following example, although artificial, illustrates the basic behavior of weak tables: 
    a = {}
    b = {}



    setmetatable(a, b)
    b.__mode = "k"         -- now `a' has weak keys
    key = {}               -- creates first key
    a[key] = 1
    key = {}               -- creates second key
    a[key] = 2
    collectgarbage()       -- forces a garbage collection cycle
    for k, v in pairs(a) do print(v) end
      --> 2

In this example, the second assignment key = {} overwrites the first key. When the collector 
runs, there is no other reference to the first key, so it is collected and the corresponding entry in the 
table is removed. The second key, however, is still anchored in variable key, so it is not collected. 

Notice that only objects can be collected from a weak table. Values, such as numbers and booleans, 
are not collectible. For instance, if we insert a numeric key in table a (from our previous example), 
it will never be removed by the collector. Of course, if the value corresponding to a numeric key is 
collected, then the whole entry is removed from the weak table. 

Strings present a subtlety here: Although strings are collectible, from an implementation point of 
view, they are not like other collectible objects. Other objects, such as tables and functions, are 
created explicitly. For instance, whenever Lua evaluates {}, it creates a new table. Whenever it 
evaluates function () ... end, it creates a new function (a closure, actually). However, 
does Lua create a new string when it evaluates "a".."b"? What if there is already a string "ab" 
in the system? Does Lua create a new one? Can the compiler create that string before running the 
program? It does not matter: These are implementation details. Thus, from the programmer's point 
of view, strings are values, not objects. Therefore, like a number or a boolean, a string is not 
removed from weak tables (unless its associated value is collected). 

17.1 - Memoize Functions
A common programming technique is to trade space for time. You can speed up some functions by 
memoizing their results so that, later, when you call the function with the same arguments, it can 
reuse the result. 

Imagine a generic server that receives requests containing strings with Lua code. Each time it gets a 
request, it runs loadstring on the string, and then calls the resulting function. However, 
loadstring is an expensive function and some commands to the server may be quite frequent. 
Instead of calling loadstring over and over each time it receives a common command like 
"closeconnection()", the server can memoize the results from loadstring using an 
auxiliary table. Before calling loadstring, the server checks in the table whether that string 
already has a translation. If it cannot find the string, then (and only then) the server calls 
loadstring and stores the result into the table. We can pack this behavior in a new function: 
    local results = {}
    function mem_loadstring (s)
      if results[s] then      -- result available?
        return results[s]     -- reuse it
      else
        local res = loadstring(s)   -- compute new result
        results[s] = res            -- save for later reuse
        return res
      end
    end



The savings with this scheme can be huge. However, it may also cause unsuspected wastes. 
Although some commands repeat over and over, many other commands happen only once. 
Gradually, the table results accumulates all commands the server has ever received plus their 
respective codes; after enough time, this will exhaust the server's memory. A weak table provides a 
simple solution to this problem. If the results table has weak values, each garbage-collection 
cycle will remove all translations not in use at that moment (which means virtually all of them): 
    local results = {}
    setmetatable(results, {__mode = "v"})  -- make values weak
    function mem_loadstring (s)
       ...    -- as before

Actually, because the indices are always strings, we can make that table fully weak, if we want: 
    setmetatable(results, {__mode = "kv"})

The net result is exactly the same. 

The memoize technique is also useful to ensure the uniqueness of some kind of object. For instance, 
assume a system that represents colors as tables, with fields red, green, and blue in some range. 
A naive color factory generates a new color for each new request: 
    function createRGB (r, g, b)
      return {red = r, green = g, blue = b}
    end

Using the memoize technique, we can reuse the same table for the same color. To create a unique 
key for each color, we simply concatenate the color indices with a separator in between: 
    local results = {}
    setmetatable(results, {__mode = "v"})  -- make values weak
    function createRGB (r, g, b)
      local key = r .. "-" .. g .. "-" .. b
      if results[key] then return results[key]
      else
        local newcolor = {red = r, green = g, blue = b}
        results[key] = newcolor
        return newcolor
      end
    end

An interesting consequence of this implementation is that the user can compare colors using the 
primitive equality operator, because two coexistent equal colors are always represented by the same 
table. Note that the same color may be represented by different tables at different times, because 
from time to time a garbage-collector cycle clears the results table. However, as long as a given 
color is in use, it is not removed from results. So, whenever a color survives long enough to be 
compared with a new one, its representation also survives long enough to be reused by the new 
color. 

17.2 - Object Attributes
Another important use of weak tables is to associate attributes with objects. There are endless 
situations where we need to attach some attribute to an object: names to functions, default values to 
tables, sizes to arrays, and so on. 

When the object is a table, we can store the attribute in the table itself, with an appropriate unique 
key. As we saw before, a simple and error-proof way to create a unique key is to create a new object 



(typically a table) and use it as key. However, if the object is not a table, it cannot keep its own 
attributes. Even for tables, sometimes we may not want to store the attribute in the original object. 
For instance, we may want to keep the attribute private, or we do not want the attribute to disturb a 
table traversal. In all these cases, we need an alternative way to associate attributes to objects. Of 
course, an external table provides an ideal way to associate attributes to objects (it is not by chance 
that tables are sometimes called associative arrays). We use the objects as keys, and their attributes 
as values. An external table can keep attributes of any type of object (as Lua allows us to use any 
type of object as a key). Moreover, attributes kept in an external table do not interfere with other 
objects and can be as private as the table itself. 

However, this seemingly perfect solution has a huge drawback: Once we use an object as a key in a 
table, we lock the object into existence. Lua cannot collect an object that is being used as a key. If 
we use a regular table to associate functions to its names, none of those functions will ever be 
collected. As you might expect, we can avoid this drawback by using a weak table. This time, 
however, we need weak keys. The use of weak keys does not prevent any key from being collected, 
once there are no other references to it. On the other hand, the table cannot have weak values; 
otherwise, attributes of live objects could be collected. 

Lua itself uses this technique to keep the size of tables used as arrays. As we will see later, the table 
library offers a function to set the size of an array and another to get this size. When you set the size 
of an array, Lua stores this size in a private weak table, where the index is the array itself and the 
value is its size. 

17.3 - Revisiting Tables with Default Values
In Section 13.4.3, we discussed how to implement tables with non-nil default values. We saw one 
particular technique and commented that two other techniques need weak tables so we postponed 
them. Now it is time to revisit the subject. As we will see, those two techniques for default values 
are actually particular applications of the two general techniques that we have seen here: object 
attributes and memoizing. 

In the first solution, we use a weak table to associate to each table its default value: 
    local defaults = {}
    setmetatable(defaults, {__mode = "k"})
    local mt = {__index = function (t) return defaults[t] end}
    function setDefault (t, d)
      defaults[t] = d
      setmetatable(t, mt)
    end

If defaults had not weak keys, it would anchor all tables with default values into permanent 
existence. 

In the second solution, we use distinct metatables for distinct default values, but we reuse the same 
metatable whenever we repeat a default value. This is a typical use of memoizing: 
    local metas = {}
    setmetatable(metas, {__mode = "v"})
    function setDefault (t, d)
      local mt = metas[d]
      if mt == nil then
        mt = {__index = function () return d end}
        metas[d] = mt     -- memoize
      end
      setmetatable(t, mt)
    end



We use weak values, in this case, to allow the collection of metatables that are not being used 
anymore. 

Given these two implementations for default values, which is best? As usual, it depends. Both have 
similar complexity and similar performance. The first implementation needs a few words for each 
table with a default value (an entry in defaults). The second implementation needs a few dozen 
words for each distinct default value (a new table, a new closure, plus an entry in metas). So, if 
your application has thousands of tables with a few distinct default values, the second 
implementation is clearly superior. On the other hand, if few tables share common defaults, then 
you should use the first one. 

18 - The Mathematical Library
In this chapter (and in the other chapters about the standard libraries), my purpose is not to give the 
complete specification of each function, but to show you what kind of functionality the library can 
provide. I may omit some subtle options or behaviors for clarity of exposition. The main idea is to 
spark your curiosity, which can then be satisfied by the reference manual. 

The math library comprises a standard set of mathematical functions, such as trigonometric 
functions (sin, cos, tan, asin, acos, etc.), exponentiation and logarithms (exp, log, 
log10), rounding functions (floor, ceil), max, min, plus a variable pi. The mathematical 
library also defines the operator `^´ to work as the exponentiation operator. 

All trigonometric functions work in radians. (Until Lua 4.0, they worked in degrees.) You can use 
the functions deg and rad to convert between degrees and radians. If you want to work in degrees, 
you can redefine the trigonometric functions: 
    local sin, asin, ... = math.sin, math.asin, ...
    local deg, rad = math.deg, math.rad
    math.sin = function (x) return sin(rad(x)) end
    math.asin = function (x) return deg(asin(x)) end
    ...

The math.random function generates pseudo-random numbers. We can call it in three ways. 
When we call it without arguments, it returns a pseudo-random real number with uniform 
distribution in the interval [0,1). When we call it with only one argument, an integer n, it returns an 
integer pseudo-random number x such that 1 <= x <= n. For instance, you can simulate the result 
of a die with random(6). Finally, we can call random with two integer arguments, l and u, to get 
a pseudo-random integer x such that l <= x <= u. 

You can set a seed for the pseudo-random generator with the randomseed function; its only 
numeric argument is the seed. Usually, when a program starts, it initializes the generator with a 
fixed seed. That means that, every time you run your program, it generates the same sequence of 
pseudo-random numbers. For debugging, that is a nice property; but in a game, you will have the 
same scenario over and over. A common trick to solve this problem is to use the current time as a 
seed: 
    math.randomseed(os.time())

(The os.time function returns a number that represents the current time, usually as the number of 
seconds since some epoch.) 



19 - The Table Library
The table library comprises auxiliary functions to manipulate tables as arrays. One of its main 
roles is to give a reasonable meaning for the size of an array in Lua. It also provides functions to 
insert and remove elements from lists and to sort the elements of an array. 

19.1 - Array Size
Frequently, in Lua, we assume that an array ends just before its first nil element. This convention 
has one drawback: We cannot have a nil inside an array. For several applications this restriction is 
not a hindrance, such as when all elements in the array have a fixed type. But sometimes we must 
allow nils inside an array. In such cases, we need a method to keep an explicit size for an array. 

The table library defines two functions to manipulate array sizes: getn, which returns the size of 
an array, and setn, which sets the size of an array. As we saw earlier, there are two methods to 
associate an attribute to a table: Either we store the attribute in a field of the table, or we use a 
separate (weak) table to do the association. Both methods have pros and cons; for that reason, the 
table library uses both. 

Usually, a call table.setn(t, n) associates t with n in an internal (weak) table and a call 
table.getn(t) retrieves the value associated with t in that internal table. However, if the table 
t has a field "n" with a numeric value, setn updates this value and getn returns it. The getn 
function still has a last option: If it cannot get an array size with any of those options, it uses the 
naive approach: to traverse the array looking for its first nil element. So, you can always use 
table.getn(t) in an array and get a reasonable result. See the examples: 
    print(table.getn{10,2,4})          --> 3
    print(table.getn{10,2,nil})        --> 2
    print(table.getn{10,2,nil; n=3})   --> 3
    print(table.getn{n=1000})          --> 1000
    
    a = {}
    print(table.getn(a))               --> 0
    table.setn(a, 10000)
    print(table.getn(a))               --> 10000
    
    a = {n=10}
    print(table.getn(a))               --> 10
    table.setn(a, 10000)
    print(table.getn(a))               --> 10000

By default, setn and getn use the internal table to store a size. This is the cleanest option, as it 
does not pollute the array with an extra element. However, the n-field option has some advantages 
too. The Lua core uses this option to set the size of the arg array, in functions with variable number 
of arguments; because the core cannot depend on a library, it cannot use setn. Another advantage 
of this option is that we can set the size of an array directly in its constructor, as we saw in the 
examples. 

It is a good practice to use both setn and getn to manipulate array sizes, even when you know 
that the size is at field n. All functions from the table library (sort, concat, insert, etc.) 
follow this practice. Actually, the possibility of setn to change the value of the field n is provided 
only for compatibility with older versions of Lua. This behavior may change in future versions of 
the language. To play safe, do not assume this behavior. Always use getn to get a size set by 
setn. 



19.2 - Insert and Remove
The table library provides functions to insert and to remove elements from arbitrary positions of 
a list. The table.insert function inserts an element in a given position of an array, moving up 
other elements to open space. Moreover, insert increments the size of the array (using setn). 
For instance, if a is the array {10, 20, 30}, after the call table.insert(a, 1, 15) a 
will be {15, 10, 20, 30}. As a special (and frequent) case, if we call insert without a 
position, it inserts the element in the last position of the array (and, therefore, moves no elements). 
As an example, the following code reads the program input line by line, storing all lines in an array: 
    a = {}
    for line in io.lines() do
      table.insert(a, line)
    end
    print(table.getn(a))         --> (number of lines read)

The table.remove function removes (and returns) an element from a given position in an array, 
moving down other elements to close space and decrementing the size of the array. When called 
without a position, it removes the last element of the array. 

With those two functions, it is straightforward to implement stacks, queues, and double queues. We 
can initialize such structures as a = {}. A push operation is equivalent to table.insert(a, 
x); a pop operation is equivalent to table.remove(a). To insert at the other end of the 
structure we use table.insert(a, 1, x); to remove from that end we use 
table.remove(a, 1). The last two operations are not particularly efficient, as they must move 
elements up and down. However, because the table library implements these functions in C, these 
loops are not too expensive and this implementation is good enough for small arrays (up to some 
hundred elements, say). 

19.3 - Sort
Another useful function on arrays is table.sort, which we have seen before. It receives the 
array to be sorted, plus an optional order function. This order function receives two arguments and 
must return true if the first argument should come first in the sorted array. If this function is not 
provided, sort uses the default less-than operation (corresponding to the `<´ operator). 

A common mistake is to try to order the indices of a table. In a table, the indices form a set, and 
have no order whatsoever. If you want to order them, you have to copy them to an array and then 
sort the array. Let us see an example. Suppose that you read a source file and build a table that 
gives, for each function name, the line where that function is defined; something like this: 
    lines = {
      luaH_set = 10,
      luaH_get = 24,
      luaH_present = 48,
    }

Now you want to print these function names in alphabetical order. If you traverse this table with 
pairs, the names appear in an arbitrary order. However, you cannot sort them directly, because 
these names are keys of the table. However, when you put these names into an array, then you can 
sort them. First, you must create an array with those names, then sort it, and finally print the result: 



    a = {}
    for n in pairs(lines) do table.insert(a, n) end
    table.sort(a)
    for i,n in ipairs(a) do print(n) end

Note that, for Lua, arrays also have no order. But we know how to count, so we get ordered values 
as long as we access the array with ordered indices. That is why you should always traverse arrays 
with ipairs, rather than pairs. The first imposes the key order 1, 2, ..., whereas the latter uses 
the natural arbitrary order of the table. 

As a more advanced solution, we can write an iterator that traverses a table following the order of 
its keys. An optional parameter f allows the specification of an alternative order. It first sorts the 
keys into an array, and then iterates on the array. At each step, it returns the key and value from the 
original table: 
    function pairsByKeys (t, f)
      local a = {}
      for n in pairs(t) do table.insert(a, n) end
      table.sort(a, f)
      local i = 0      -- iterator variable
      local iter = function ()   -- iterator function
        i = i + 1
        if a[i] == nil then return nil
        else return a[i], t[a[i]]
        end
      end
      return iter
    end

With this function, it is easy to print those function names in alphabetical order. The loop 
    for name, line in pairsByKeys(lines) do
      print(name, line)
    end

will print 
    luaH_get        24
    luaH_present    48
    luaH_set        10

20 - The String Library
The power of a raw Lua interpreter to manipulate strings is quite limited. A program can create 
string literals and concatenate them. But it cannot extract a substring, check its size, or examine its 
contents. The full power to manipulate strings in Lua comes from its string library. 

Some functions in the string library are quite simple: string.len(s) returns the length of a 
string s. string.rep(s, n) returns the string s repeated n times. You can create a string with 
1M bytes (for tests, for instance) with string.rep("a", 2^20). string.lower(s) 
returns a copy of s with the upper-case letters converted to lower case; all other characters in the 
string are not changed (string.upper converts to upper case). As a typical use, if you want to 
sort an array of strings regardless of case, you may write something like 
    table.sort(a, function (a, b)
      return string.lower(a) < string.lower(b)
    end)



Both string.upper and string.lower follow the current locale. Therefore, if you work 
with the European Latin-1 locale, the expression 
    string.upper("ação")

results in "AÇÃO". 

The call string.sub(s,i,j) extracts a piece of the string s, from the i-th to the j-th 
character inclusive. In Lua, the first character of a string has index 1. You can also use negative 
indices, which count from the end of the string: The index -1 refers to the last character in a string, 
-2 to the previous one, and so on. Therefore, the call string.sub(s, 1, j) gets a prefix of 
the string s with length j; string.sub(s, j, -1) gets a suffix of the string, starting at the j-
th character (if you do not provide a third argument, it defaults to -1, so we could write the last call 
as string.sub(s, j)); and string.sub(s, 2, -2) returns a copy of the string s with 
the first and last characters removed: 
    s = "[in brackets]"
    print(string.sub(s, 2, -2))   -->  in brackets

Remember that strings in Lua are immutable. The string.sub function, like any other function 
in Lua, does not change the value of a string, but returns a new string. A common mistake is to write 
something like 
    string.sub(s, 2, -2)

and to assume that the value of s will be modified. If you want to modify the value of a variable, 
you must assign the new value to the variable: 
    s = string.sub(s, 2, -2)

The string.char and string.byte functions convert between characters and their internal 
numeric representations. The function string.char gets zero or more integers, converts each 
one to a character, and returns a string concatenating all those characters. The function 
string.byte(s, i) returns the internal numeric representation of the i-th character of the 
string s; the second argument is optional, so that a call string.byte(s) returns the internal 
numeric representation of the first (or single) character of s. In the following examples, we assume 
that characters are represented in ASCII: 
    print(string.char(97))                    -->  a
    i = 99; print(string.char(i, i+1, i+2))   -->  cde
    print(string.byte("abc"))                 -->  97
    print(string.byte("abc", 2))              -->  98
    print(string.byte("abc", -1))             -->  99

In the last line, we used a negative index to access the last character of the string. 

The function string.format is a powerful tool when formatting strings, typically for output. It 
returns a formatted version of its variable number of arguments following the description given by 
its first argument, the so-called format string. The format string has rules similar to those of the 
printf function of standard C: It is composed of regular text and directives, which control where 
and how each argument must be placed in the formatted string. A simple directive is the character `
%´ plus a letter that tells how to format the argument: `d´ for a decimal number, `x´ for 
hexadecimal, `o´ for octal, `f´ for a floating-point number, `s´ for strings, plus other variants. 
Between the `%´ and the letter, a directive can include other options, which control the details of the 
format, such as the number of decimal digits of a floating-point number: 
    print(string.format("pi = %.4f", PI))     --> pi = 3.1416
    d = 5; m = 11; y = 1990



    print(string.format("%02d/%02d/%04d", d, m, y))
      --> 05/11/1990
    tag, title = "h1", "a title"
    print(string.format("<%s>%s</%s>", tag, title, tag))
      --> <h1>a title</h1>

In the first example, the %.4f means a floating-point number with four digits after the decimal 
point. In the second example, the %02d means a decimal number (`d´), with at least two digits and 
zero padding; the directive %2d, without the zero, would use blanks for padding. For a complete 
description of those directives, see the Lua reference manual. Or, better yet, see a C manual, as Lua 
calls the standard C libraries to do the hard work here. 

20.1 - Pattern-Matching Functions
The most powerful functions in the string library are string.find (string Find), 
string.gsub (Global Substitution), and string.gfind (Global Find). They all are based on 
patterns. 

Unlike several other scripting languages, Lua does not use POSIX regular expressions (regexp) for 
pattern matching. The main reason for this is size: A typical implementation of POSIX regexp takes 
more than 4,000 lines of code. This is bigger than all Lua standard libraries together. In comparison, 
the implementation of pattern matching in Lua has less than 500 lines. Of course, the pattern 
matching in Lua cannot do all that a full POSIX implementation does. Nevertheless, pattern 
matching in Lua is a powerful tool and includes some features that are difficult to match with 
standard POSIX implementations. 

The basic use of string.find is to search for a pattern inside a given string, called the subject 
string. The function returns the position where it found the pattern or nil if it could not find it. The 
simplest form of a pattern is a word, which matches only a copy of itself. For instance, the pattern 
'hello' will search for the substring "hello" inside the subject string. When find finds its 
pattern, it returns two values: the index where the match begins and the index where the match 
ends. 
    s = "hello world"
    i, j = string.find(s, "hello")
    print(i, j)                      --> 1    5
    print(string.sub(s, i, j))       --> hello
    print(string.find(s, "world"))   --> 7    11
    i, j = string.find(s, "l")
    print(i, j)                      --> 3    3
    print(string.find(s, "lll"))     --> nil

When a match succeeds, a string.sub of the values returned by string.find would return 
the part of the subject string that matched the pattern. (For simple patterns, this is the pattern itself.) 

The string.find function has an optional third parameter: an index that tells where in the 
subject string to start the search. This parameter is useful when we want to process all the indices 
where a given pattern appears. We search for a new pattern repeatedly, each time starting after the 
position where we found the previous one. As an example, the following code makes a table with 
the positions of all newlines in a string: 
    local t = {}                   -- table to store the indices
    local i = 0
    while true do
      i = string.find(s, "\n", i+1)    -- find 'next' newline
      if i == nil then break end



      table.insert(t, i)
    end

We will see later a simpler way to write such loops, using the string.gfind iterator. 

The string.gsub function has three parameters: a subject string, a pattern, and a replacement 
string. Its basic use is to substitute the replacement string for all occurrences of the pattern inside 
the subject string: 
    s = string.gsub("Lua is cute", "cute", "great")
    print(s)         --> Lua is great
    s = string.gsub("all lii", "l", "x")
    print(s)         --> axx xii
    s = string.gsub("Lua is great", "perl", "tcl")
    print(s)         --> Lua is great

An optional fourth parameter limits the number of substitutions to be made: 
    s = string.gsub("all lii", "l", "x", 1)
    print(s)          --> axl lii
    s = string.gsub("all lii", "l", "x", 2)
    print(s)          --> axx lii

The string.gsub function also returns as a second result the number of times it made the 
substitution. For instance, an easy way to count the number of spaces in a string is 
    _, count = string.gsub(str, " ", " ")

(Remember, the _ is just a dummy variable name.) 

20.2 - Patterns
You can make patterns more useful with character classes. A character class is an item in a pattern 
that can match any character in a specific set. For instance, the class %d matches any digit. 
Therefore, you can search for a date in the format dd/mm/yyyy with the pattern '%d%d/%d%d/
%d%d%d%d': 
    s = "Deadline is 30/05/1999, firm"
    date = "%d%d/%d%d/%d%d%d%d"
    print(string.sub(s, string.find(s, date)))   --> 30/05/1999

The following table lists all character classes: 

. all characters
%a letters
%c control characters
%d digits
%l lower case letters
%p punctuation characters
%s space characters
%u upper case letters
%w alphanumeric characters
%x hexadecimal digits



%z the character with representation 0
An upper case version of any of those classes represents the complement of the class. For instance, 
'%A' represents all non-letter characters: 
    print(string.gsub("hello, up-down!", "%A", "."))
      --> hello..up.down. 4

(The 4 is not part of the result string. It is the second result of gsub, the total number of 
substitutions. Other examples that print the result of gsub will omit this count.) 

Some characters, called magic characters, have special meanings when used in a pattern. The 
magic characters are 
    ( ) . % + - * ? [ ^ $

The character `%´ works as an escape for those magic characters. So, '%.' matches a dot; '%%' 
matches the character `%´ itself. You can use the escape `%´ not only for the magic characters, but 
also for all other non-alphanumeric characters. When in doubt, play safe and put an escape. 

For Lua, patterns are regular strings. They have no special treatment and follow the same rules as 
other strings. Only inside the functions are they interpreted as patterns and only then does the `%´ 
work as an escape. Therefore, if you need to put a quote inside a pattern, you must use the same 
techniques that you use to put a quote inside other strings; for instance, you can escape the quote 
with a `\´, which is the escape character for Lua. 

A char-set allows you to create your own character classes, combining different classes and single 
characters between square brackets. For instance, the char-set '[%w_]' matches both alphanumeric 
characters and underscores, the char-set '[01]' matches binary digits, and the char-set '[%[%]]' 
matches square brackets. To count the number of vowels in a text, you can write 
    _, nvow = string.gsub(text, "[AEIOUaeiou]", "")

You can also include character ranges in a char-set, by writing the first and the last characters of the 
range separated by a hyphen. You will seldom need this facility, because most useful ranges are 
already predefined; for instance, '[0-9]' is simpler when written as '%d', '[0-9a-fA-F]' is the 
same as '%x'. However, if you need to find an octal digit, then you may prefer '[0-7]', instead of 
an explicit enumeration ('[01234567]'). You can get the complement of a char-set by starting it 
with `^´: '[^0-7]' finds any character that is not an octal digit and '[^\n]' matches any character 
different from newline. But remember that you can negate simple classes with its upper case 
version: '%S' is simpler than '[^%s]'. 

Character classes follow the current locale set for Lua. Therefore, the class '[a-z]' can be different 
from '%l'. In a proper locale, the latter form includes letters such as `ç´ and `ã´. You should always 
use the latter form, unless you have a strong reason to do otherwise: It is simpler, more portable, 
and slightly more efficient. 

You can make patterns still more useful with modifiers for repetitions and optional parts. Patterns in 
Lua offer four modifiers: 

+ 1 or more repetitions
* 0 or more repetitions
- also 0 or more repetitions
? optional (0 or 1 occurrence)

The `+´ modifier matches one or more characters of the original class. It will always get the longest 
sequence that matches the pattern. For instance, the pattern '%a+' means one or more letters, or a 



word: 
    print(string.gsub("one, and two; and three", "%a+", "word"))
      --> word, word word; word word

The pattern '%d+' matches one or more digits (an integer): 
    i, j = string.find("the number 1298 is even", "%d+")
    print(i,j)   --> 12  15

The modifier `*´ is similar to `+´, but it also accepts zero occurrences of characters of the class. A 
typical use is to match optional spaces between parts of a pattern. For instance, to match an empty 
parenthesis pair, such as () or ( ), you use the pattern '%(%s*%)'. (The pattern '%s*' matches 
zero or more spaces. Parentheses have a special meaning in a pattern, so we must escape them with 
a `%´.) As another example, the pattern '[_%a][_%w]*' matches identifiers in a Lua program: a 
sequence that starts with a letter or an underscore, followed by zero or more underscores or 
alphanumeric characters. 

Like `*´, the modifier `-´ also matches zero or more occurrences of characters of the original class. 
However, instead of matching the longest sequence, it matches the shortest one. Sometimes, there is 
no difference between `*´ or `-´, but usually they present rather different results. For instance, if 
you try to find an identifier with the pattern '[_%a][_%w]-', you will find only the first letter, 
because the '[_%w]-' will always match the empty sequence. On the other hand, suppose you want 
to find comments in a C program. Many people would first try '/%*.*%*/' (that is, a "/*" 
followed by a sequence of any characters followed by "*/", written with the appropriate escapes). 
However, because the '.*' expands as far as it can, the first "/*" in the program would close only 
with the last "*/": 
    test = "int x; /* x */  int y; /* y */"
    print(string.gsub(test, "/%*.*%*/", "<COMMENT>"))
      --> int x; <COMMENT>

The pattern '.-', instead, will expand the least amount necessary to find the first "*/", so that you 
get your desired result: 
    test = "int x; /* x */  int y; /* y */"
    print(string.gsub(test, "/%*.-%*/", "<COMMENT>"))
        --> int x; <COMMENT>  int y; <COMMENT>

The last modifier, `?´, matches an optional character. As an example, suppose we want to find an 
integer in a text, where the number may contain an optional sign. The pattern '[+-]?%d+' does the 
job, matching numerals like "-12", "23" and "+1009". The '[+-]' is a character class that 
matches both a `+´ or a `-´ sign; the following `?´ makes that sign optional. 

Unlike some other systems, in Lua a modifier can only be applied to a character class; there is no 
way to group patterns under a modifier. For instance, there is no pattern that matches an optional 
word (unless the word has only one letter). Usually you can circumvent this limitation using some 
of the advanced techniques that we will see later. 

If a pattern begins with a `^´, it will match only at the beginning of the subject string. Similarly, if it 
ends with a `$´, it will match only at the end of the subject string. These marks can be used both to 
restrict the patterns that you find and to anchor patterns. For instance, the test 
    if string.find(s, "^%d") then ...

checks whether the string s starts with a digit and the test 
    if string.find(s, "^[+-]?%d+$") then ...



checks whether that string represents an integer number, without other leading or trailing characters. 

Another item in a pattern is the '%b', that matches balanced strings. Such item is written as '%bxy', 
where x and y are any two distinct characters; the x acts as an opening character and the y as the 
closing one. For instance, the pattern '%b()' matches parts of the string that start with a `(´ and 
finish at the respective `)´: 
    print(string.gsub("a (enclosed (in) parentheses) line",
                      "%b()", ""))
      --> a  line

Typically, this pattern is used as '%b()', '%b[]', '%b%{%}', or '%b<>', but you can use any 
characters as delimiters. 

20.3 - Captures
The capture mechanism allows a pattern to yank parts of the subject string that match parts of the 
pattern, for further use. You specify a capture by writing the parts of the pattern that you want to 
capture between parentheses. 

When you specify captures to string.find, it returns the captured values as extra results from 
the call. A typical use of this facility is to break a string into parts: 
    pair = "name = Anna"
    _, _, key, value = string.find(pair, "(%a+)%s*=%s*(%a+)")
    print(key, value)  --> name  Anna

The pattern '%a+' specifies a non-empty sequence of letters; the pattern '%s*' specifies a possibly 
empty sequence of spaces. So, in the example above, the whole pattern specifies a sequence of 
letters, followed by a sequence of spaces, followed by `=´, again followed by spaces plus another 
sequence of letters. Both sequences of letters have their patterns enclosed by parentheses, so that 
they will be captured if a match occurs. The find function always returns first the indices where 
the matching happened (which we store in the dummy variable _ in the previous example) and then 
the captures made during the pattern matching. Below is a similar example: 
    date = "17/7/1990"
    _, _, d, m, y = string.find(date, "(%d+)/(%d+)/(%d+)")
    print(d, m, y)  --> 17  7  1990

We can also use captures in the pattern itself. In a pattern, an item like '%d', where d is a single digit, 
matches only a copy of the d-th capture. As a typical use, suppose you want to find, inside a string, 
a substring enclosed between single or double quotes. You could try a pattern such as '["'].-
["']', that is, a quote followed by anything followed by another quote; but you would have 
problems with strings like "it's all right". To solve that problem, you can capture the first 
quote and use it to specify the second one: 
    s = [[then he said: "it's all right"!]]
    a, b, c, quotedPart = string.find(s, "([\"'])(.-)%1")
    print(quotedPart)   --> it's all right
    print(c)            --> "

The first capture is the quote character itself and the second capture is the contents of the quote (the 
substring matching the '.-'). 

The third use of captured values is in the replacement string of gsub. Like the pattern, the 
replacement string may contain items like '%d', which are changed to the respective captures when 



the substitution is made. (By the way, because of those changes, a `%´ in the replacement string 
must be escaped as "%%".) As an example, the following command duplicates every letter in a 
string, with a hyphen between the copies: 
    print(string.gsub("hello Lua!", "(%a)", "%1-%1"))
      -->  h-he-el-ll-lo-o L-Lu-ua-a!

This one interchanges adjacent characters: 
    print(string.gsub("hello Lua", "(.)(.)", "%2%1"))
      -->  ehll ouLa

As a more useful example, let us write a primitive format converter, which gets a string with 
commands written in a LaTeX style, such as 
    \command{some text}

and changes them to a format in XML style, 
    <command>some text</command>

For this specification, the following line does the job: 
    s = string.gsub(s, "\\(%a+){(.-)}", "<%1>%2</%1>")

For instance, if s is the string 
    the \quote{task} is to \em{change} that.

that gsub call will change it to 
    the <quote>task</quote> is to <em>change</em> that.

Another useful example is how to trim a string: 
    function trim (s)
      return (string.gsub(s, "^%s*(.-)%s*$", "%1"))
    end

Note the judicious use of pattern formats. The two anchors (`^´ and `$´) ensure that we get the 
whole string. Because the '.-' tries to expand as little as possible, the two patterns '%s*' match all 
spaces at both extremities. Note also that, because gsub returns two values, we use extra 
parentheses to discard the extra result (the count). 

The last use of captured values is perhaps the most powerful. We can call string.gsub with a 
function as its third argument, instead of a replacement string. When invoked this way, 
string.gsub calls the given function every time it finds a match; the arguments to this function 
are the captures, while the value that the function returns is used as the replacement string. As a first 
example, the following function does variable expansion: It substitutes the value of the global 
variable varname for every occurrence of $varname in a string: 
    function expand (s)
      s = string.gsub(s, "$(%w+)", function (n)
            return _G[n]
          end)
      return s
    end
    
    name = "Lua"; status = "great"
    print(expand("$name is $status, isn't it?"))
      --> Lua is great, isn't it?



If you are not sure whether the given variables have string values, you can apply tostring to 
their values: 
    function expand (s)
      return (string.gsub(s, "$(%w+)", function (n)
                return tostring(_G[n])
              end))
    end
    
    print(expand("print = $print; a = $a"))
      --> print = function: 0x8050ce0; a = nil

A more powerful example uses loadstring to evaluate whole expressions that we write in the 
text enclosed by square brackets preceded by a dollar sign: 
    s = "sin(3) = $[math.sin(3)]; 2^5 = $[2^5]"
    
    print((string.gsub(s, "$(%b[])", function (x)
             x = "return " .. string.sub(x, 2, -2)
             local f = loadstring(x)
             return f()
           end)))
      -->  sin(3) = 0.1411200080598672; 2^5 = 32

The first match is the string "$[math.sin(3)]", whose corresponding capture is 
"[math.sin(3)]". The call to string.sub removes the brackets from the captured string, so 
the string loaded for execution will be "return math.sin(3)". The same happens for the 
match "$[2^5]". 

Often we want a kind of string.gsub only to iterate on a string, without any interest in the 
resulting string. For instance, we could collect the words of a string into a table with the following 
code: 
    words = {}
    string.gsub(s, "(%a+)", function (w)
      table.insert(words, w)
    end)

If s were the string "hello hi, again!", after that command the word table would be 
    {"hello", "hi", "again"}

The string.gfind function offers a simpler way to write that code: 
    words = {}
    for w in string.gfind(s, "(%a)") do
      table.insert(words, w)
    end

The gfind function fits perfectly with the generic for loop. It returns a function that iterates on all 
occurrences of a pattern in a string. 

We can simplify that code a little bit more. When we call gfind with a pattern without any explicit 
capture, the function will capture the whole pattern. Therefore, we can rewrite the previous example 
like this: 
    words = {}
    for w in string.gfind(s, "%a") do
      table.insert(words, w)
    end



For our next example, we use URL encoding, which is the encoding used by HTTP to send 
parameters in a URL. This encoding encodes special characters (such as `=´, `&´, and `+´) as 
"%XX", where XX is the hexadecimal representation of the character. Then, it changes spaces to `+
´. For instance, it encodes the string "a+b = c" as "a%2Bb+%3D+c". Finally, it writes each 
parameter name and parameter value with an `=´ in between and appends all pairs name=value 
with an ampersand in-between. For instance, the values 
    name = "al";  query = "a+b = c"; q="yes or no"

are encoded as 
    name=al&query=a%2Bb+%3D+c&q=yes+or+no

Now, suppose we want to decode this URL and store each value in a table, indexed by its 
corresponding name. The following function does the basic decoding: 
    function unescape (s)
      s = string.gsub(s, "+", " ")
      s = string.gsub(s, "%%(%x%x)", function (h)
            return string.char(tonumber(h, 16))
          end)
      return s
    end

The first statement changes each `+´ in the string to a space. The second gsub matches all two-
digit hexadecimal numerals preceded by `%´ and calls an anonymous function. That function 
converts the hexadecimal numeral into a number (tonumber, with base 16) and returns the 
corresponding character (string.char). For instance, 
    print(unescape("a%2Bb+%3D+c"))  --> a+b = c

To decode the pairs name=value we use gfind. Because both names and values cannot contain 
either `&´ or `=´, we can match them with the pattern '[^&=]+': 
    cgi = {}
    function decode (s)
      for name, value in string.gfind(s, "([^&=]+)=([^&=]+)") do
        name = unescape(name)
        value = unescape(value)
        cgi[name] = value
      end
    end

That call to gfind matches all pairs in the form name=value and, for each pair, the iterator 
returns the corresponding captures (as marked by the parentheses in the matching string) as the 
values to name and value. The loop body simply calls unescape on both strings and stores the 
pair in the cgi table. 

The corresponding encoding is also easy to write. First, we write the escape function; this 
function encodes all special characters as a `%´ followed by the character ASCII code in 
hexadecimal (the format option "%02X" makes an hexadecimal number with two digits, using 0 
for padding), and then changes spaces to `+´: 
    function escape (s)
      s = string.gsub(s, "([&=+%c])", function (c)
            return string.format("%%%02X", string.byte(c))
          end)
      s = string.gsub(s, " ", "+")
      return s



    end

The encode function traverses the table to be encoded, building the resulting string: 
    function encode (t)
      local s = ""
      for k,v in pairs(t) do
        s = s .. "&" .. escape(k) .. "=" .. escape(v)
      end
      return string.sub(s, 2)     -- remove first `&'
    end
    
    t = {name = "al",  query = "a+b = c", q="yes or no"}
    print(encode(t)) --> q=yes+or+no&query=a%2Bb+%3D+c&name=al

20.4 - Tricks of the Trade
Pattern matching is a powerful tool for manipulating strings. You can perform many complex 
operations with only a few calls to string.gsub and find. However, as with any power, you 
must use it carefully. 

Pattern matching is not a replacement for a proper parser. For quick-and-dirty programs, you can do 
useful manipulations on source code, but it is hard to build a product with quality. As a good 
example, consider the pattern we used to match comments in a C program: '/%*.-%*/'. If your 
program has a string containing "/*", you will get a wrong result: 
    test = [[char s[] = "a /* here";  /* a tricky string */]]
    print(string.gsub(test, "/%*.-%*/", "<COMMENT>"))
      --> char s[] = "a <COMMENT>

Strings with such contents are rare and, for your own use, that pattern will probably do its job. But 
you cannot sell a program with such a flaw. 

Usually, pattern matching is efficient enough for Lua programs: A Pentium 333MHz (which is not a 
fast machine by today's standards) takes less than a tenth of a second to match all words in a text 
with 200K characters (30K words). But you can take precautions. You should always make the 
pattern as specific as possible; loose patterns are slower than specific ones. An extreme example is 
'(.-)%$', to get all text in a string up to the first dollar sign. If the subject string has a dollar sign, 
everything goes fine; but suppose that the string does not contain any dollar signs. The algorithm 
will first try to match the pattern starting at the first position of the string. It will go through all the 
string, looking for a dollar. When the string ends, the pattern fails for the first position of the string. 
Then, the algorithm will do the whole search again, starting at the second position of the string, 
only to discover that the pattern does not match there, too; and so on. This will take a quadratic 
time, which results in more than three hours in a Pentium 333MHz for a string with 200K 
characters. You can correct this problem simply by anchoring the pattern at the first position of the 
string, with '^(.-)%$'. The anchor tells the algorithm to stop the search if it cannot find a match at 
the first position. With the anchor, the pattern runs in less than a tenth of a second. 

Beware also of empty patterns, that is, patterns that match the empty string. For instance, if you try 
to match names with a pattern like '%a*', you will find names everywhere: 
    i, j = string.find(";$%  **#$hello13", "%a*")
    print(i,j)   --> 1  0

In this example, the call to string.find has correctly found an empty sequence of letters at the 
beginning of the string. 



It never makes sense to write a pattern that begins or ends with the modifier `-´, because it will 
match only the empty string. This modifier always needs something around it, to anchor its 
expansion. Similarly, a pattern that includes '.*' is tricky, because this construction can expand 
much more than you intended. 

Sometimes, it is useful to use Lua itself to build a pattern. As an example, let us see how we can 
find long lines in a text, say lines with more than 70 characters. Well, a long line is a sequence of 70 
or more characters different from newline. We can match a single character different from newline 
with the character class '[^\n]'. Therefore, we can match a long line with a pattern that repeats 70 
times the pattern for one character, followed by zero or more of those characters. Instead of writing 
this pattern by hand, we can create it with string.rep: 
    pattern = string.rep("[^\n]", 70) .. "[^\n]*"

As another example, suppose you want to make a case-insensitive search. A way to do that is to 
change any letter x in the pattern for the class '[xX]', that is, a class including both the upper and 
the lower versions of the original letter. We can automate that conversion with a function: 
    function nocase (s)
      s = string.gsub(s, "%a", function (c)
            return string.format("[%s%s]", string.lower(c),
                                           string.upper(c))
          end)
      return s
    end
    
    print(nocase("Hi there!"))
      -->  [hH][iI] [tT][hH][eE][rR][eE]!

Sometimes, you want to change every plain occurrence of s1 to s2, without regarding any 
character as magic. If the strings s1 and s2 are literals, you can add proper escapes to magic 
characters while you write the strings. But if those strings are variable values, you can use another 
gsub to put the escapes for you: 
    s1 = string.gsub(s1, "(%W)", "%%%1")
    s2 = string.gsub(s2, "%%", "%%%%")

In the search string, we escape all non-alphanumeric characters. In the replacement string, we 
escape only the `%´. 

Another useful technique for pattern matching is to pre-process the subject string before the real 
work. A simple example of the use of pre-processing is to change to upper case all quoted strings in 
a text, where a quoted string starts and ends with a double quote (`"´), but may contain escaped 
quotes ("\""): 
    follows a typical string: "This is \"great\"!".

Our approach to handling such cases is to pre-process the text so as to encode the problematic 
sequence to something else. For instance, we could code "\"" as "\1". However, if the original 
text already contains a "\1", we are in trouble. An easy way to do the encoding and avoid this 
problem is to code all sequences "\x" as "\ddd", where ddd is the decimal representation of the 
character x: 
    function code (s)
      return (string.gsub(s, "\\(.)", function (x)
                return string.format("\\%03d", string.byte(x))
              end))
    end



Now any sequence "\ddd" in the encoded string must have come from the coding, because any 
"\ddd" in the original string has been coded, too. So the decoding is an easy task: 
    function decode (s)
      return (string.gsub(s, "\\(%d%d%d)", function (d)
                return "\\" .. string.char(d)
              end))
    end

Now we can complete our task. As the encoded string does not contain any escaped quote ("\""), 
we can search for quoted strings simply with '".-"': 
    s = [[follows a typical string: "This is \"great\"!".]]
    s = code(s)
    s = string.gsub(s, '(".-")', string.upper)
    s = decode(s)
    print(s)
      --> follows a typical string: "THIS IS \"GREAT\"!".

or, in a more compact notation, 
    print(decode(string.gsub(code(s), '(".-")', string.upper)))

As a more complex task, let us return to our example of a primitive format converter, which 
changes format commands written as \command{string} to XML style: 
    <command>string</command>

But now our original format is more powerful and uses the backslash character as a general escape, 
so that we can represent the characters `\´, `{´, and `}´, writing "\\", "\{", and "\}". To avoid 
our pattern matching mixing up commands and escaped characters, we should recode those 
sequences in the original string. However, this time we cannot code all sequences \x, because that 
would code our commands (written as \command) too. Instead, we code \x only when x is not a 
letter: 
    function code (s)
      return (string.gsub(s, '\\(%A)', function (x)
               return string.format("\\%03d", string.byte(x))
             end))
    end

The decode is like that of the previous example, but it does not include the backslashes in the final 
string; therefore, we can call string.char directly: 
    function decode (s)
      return (string.gsub(s, '\\(%d%d%d)', string.char))
    end
    
    s = [[a \emph{command} is written as \\command\{text\}.]]
    s = code(s)
    s = string.gsub(s, "\\(%a+){(.-)}", "<%1>%2</%1>")
    print(decode(s))
      -->  a <emph>command</emph> is written as \command{text}.

Our last example here deals with Comma-Separated Values (CSV), a text format supported by many 
programs, such as Microsoft Excel, to represent tabular data. A CSV file represents a list of records, 
where each record is a list of string values written in a single line, with commas between the values. 
Values that contain commas must be written between double quotes; if such values also have 
quotes, the quotes are written as two quotes. As an example, the array 



    {'a b', 'a,b', ' a,"b"c', 'hello "world"!', ''}

can be represented as 
    a b,"a,b"," a,""b""c", hello "world"!,

To transform an array of strings into CSV is easy. All we have to do is to concatenate the strings 
with commas between them: 
    function toCSV (t)
      local s = ""
      for _,p in pairs(t) do
        s = s .. "," .. escapeCSV(p)
      end
      return string.sub(s, 2)      -- remove first comma
    end

If a string has commas or quotes inside, we enclose it between quotes and escape its original quotes: 
    function escapeCSV (s)
      if string.find(s, '[,"]') then
        s = '"' .. string.gsub(s, '"', '""') .. '"'
      end
      return s
    end

To break a CSV into an array is more difficult, because we must avoid mixing up the commas 
written between quotes with the commas that separate fields. We could try to escape the commas 
between quotes. However, not all quote characters act as quotes; only quote characters after a 
comma act as a starting quote, as long as the comma itself is acting as a comma (that is, it is not 
between quotes). There are too many subtleties. For instance, two quotes may represent a single 
quote, two quotes, or nothing: 
    "hello""hello", "",""

The first field in this example is the string "hello"hello", the second field is the string " """ 
(that is, a space followed by two quotes), and the last field is an empty string. 

We could try to use multiple gsub calls to handle all those cases, but it is easier to program this 
task with a more conventional approach, using an explicit loop over the fields. The main task of the 
loop body is to find the next comma; it also stores the field contents in a table. For each field, we 
explicitly test whether the field starts with a quote. If it does, we do a loop looking for the closing 
quote. In this loop, we use the pattern '"("?)' to find the closing quote of a field: If a quote is 
followed by another quote, the second quote is captured and assigned to the c variable, meaning 
that this is not the closing quote yet. 
    function fromCSV (s)
      s = s .. ','        -- ending comma
      local t = {}        -- table to collect fields
      local fieldstart = 1
      repeat
        -- next field is quoted? (start with `"'?)
        if string.find(s, '^"', fieldstart) then
          local a, c
          local i  = fieldstart
          repeat
            -- find closing quote
            a, i, c = string.find(s, '"("?)', i+1)
          until c ~= '"'    -- quote not followed by quote?
          if not i then error('unmatched "') end
          local f = string.sub(s, fieldstart+1, i-1)



          table.insert(t, (string.gsub(f, '""', '"')))
          fieldstart = string.find(s, ',', i) + 1
        else                -- unquoted; find next comma
          local nexti = string.find(s, ',', fieldstart)
          table.insert(t, string.sub(s, fieldstart, nexti-1))
          fieldstart = nexti + 1
        end
      until fieldstart > string.len(s)
      return t
    end
    
    t = fromCSV('"hello "" hello", "",""')
    for i, s in ipairs(t) do print(i, s) end
      --> 1       hello " hello
      --> 2        ""
      --> 3

21 - The I/O Library
The I/O library offers two different models for file manipulation. The simple model assumes a 
current input and a current output files, and its I/O operations operate on those files. The complete 
model uses explicit file handles and it adopts an object-oriented style that defines all operations as 
methods on file handles. 

The simple model is convenient for simple things; we have been using it all along the book until 
now. But it is not enough for more advanced file manipulation, such as reading from several files 
simultaneously. For those manipulations, the complete model is more convenient. 

The I/O library puts all its functions into the io table. 

21.1 - The Simple I/O Model
The simple model does all of its operations on two current files. The library initializes the current 
input file as the process's standard input (stdin) and the current output file as the process's 
standard output (stdout). Therefore, when we execute something like io.read(), we read a 
line from the standard input. 

We can change those current files with the io.input and io.output functions. A call like 
io.input(filename) opens the given file (in read mode) and sets it as the current input file. 
From this point on, all input will come from this file, until another call to io.input; 
io.output does a similar job for output. In case of errors, both functions raise the error. If you 
want to handle errors directly, you must use io.open, from the complete model. 

As write is simpler than read, we will look at it first. The io.write function simply gets an 
arbitrary number of string arguments and writes them to the current output file. Numbers are 
converted to strings following the usual conversion rules; for full control over this conversion, you 
should use the format function, from the string library: 
    > io.write("sin (3) = ", math.sin(3), "\n")
      --> sin (3) = 0.1411200080598672
    > io.write(string.format("sin (3) = %.4f\n", math.sin(3)))
      --> sin (3) = 0.1411

Avoid code like io.write(a..b..c); the call io.write(a,b,c) accomplishes the same 
effect with fewer resources, as it avoids the concatenations. 



As a rule, you should use print for quick-and-dirty programs, or for debugging, and write when 
you need full control over your output: 
    > print("hello", "Lua"); print("Hi")
      --> hello   Lua
      --> Hi
    
    > io.write("hello", "Lua"); io.write("Hi", "\n")
      --> helloLuaHi

Unlike print, write adds no extra characters to the output, such as tabs or newlines. Moreover, 
write uses the current output file, whereas print always uses the standard output. Finally, 
print automatically applies tostring to its arguments, so it can also show tables, functions, 
and nil. 
The read function reads strings from the current input file. Its arguments control what is read: 

"*all" reads the whole file
"*line" reads the next line
"*number" reads a number
num reads a string with up to num characters

The call io.read("*all") reads the whole current input file, starting at its current position. If 
we are at the end of file, or if the file is empty, the call returns an empty string. 

Because Lua handles long strings efficiently, a simple technique for writing filters in Lua is to read 
the whole file into a string, do the processing to the string (typically with gsub), and then write the 
string to the output: 
    t = io.read("*all")         -- read the whole file
    t = string.gsub(t, ...)     -- do the job
    io.write(t)                 -- write the file

As an example, the following code is a complete program to code a file's content using the quoted-
printable encoding of MIME. In this encoding, non-ASCII characters are coded as =XX, where XX 
is the numeric code of the character in hexadecimal. To keep the consistency of the encoding, the `=
´ character must be encoded as well. The pattern used in the gsub captures all characters with 
codes from 128 to 255, plus the equal sign. 
    t = io.read("*all")
    t = string.gsub(t, "([\128-\255=])", function (c)
          return string.format("=%02X", string.byte(c))
        end)
    io.write(t)

On a Pentium 333MHz, this program takes 0.2 seconds to convert a file with 200K characters. 

The call io.read("*line") returns the next line from the current input file, without the 
newline character. When we reach the end of file, the call returns nil (as there is no next line to 
return). This pattern is the default for read, so io.read() has the same effect as 
io.read("*line"). Usually, we use this pattern only when our algorithm naturally handles the 
file line by line; otherwise, we favor reading the whole file at once, with *all, or in blocks, as we 
will see later. As a simple example of the use of this pattern, the following program copies its 
current input to the current output, numbering each line: 
    local count = 1
    while true do
      local line = io.read()
      if line == nil then break end



      io.write(string.format("%6d  ", count), line, "\n")
      count = count + 1
    end

However, to iterate on a whole file line by line, we do better to use the io.lines iterator. For 
instance, we can write a complete program to sort the lines of a file as follows: 
    local lines = {}
    -- read the lines in table 'lines'
    for line in io.lines() do
      table.insert(lines, line)
    end
    -- sort
    table.sort(lines)
    -- write all the lines
    for i, l in ipairs(lines) do io.write(l, "\n") end

This program sorts a file with 4.5 MB (32K lines) in 1.8 seconds (on a Pentium 333MHz), against 
0.6 seconds spent by the system sort program, which is written in C and highly optimized. 

The call io.read("*number") reads a number from the current input file. This is the only case 
where read returns a number, instead of a string. When you need to read many numbers from a 
file, the absence of the intermediate strings can make a significant performance improvement. The 
*number option skips any spaces before the number and accepts number formats like -3, +5.2, 
1000, and -3.4e-23. If it cannot find a number at the current file position (because of bad 
format or end of file), it returns nil. 
You can call read with multiple options; for each argument, the function will return the respective 
result. Suppose you have a file with three numbers per line: 
    6.0       -3.23     15e12
    4.3       234       1000001
    ...

Now you want to print the maximum of each line. You can read all three numbers in a single call to 
read: 
    while true do
      local n1, n2, n3 = io.read("*number", "*number",
                                 "*number")
      if not n1 then break end
      print(math.max(n1, n2, n3))
    end

In any case, you should always consider the alternative of reading the whole file with option 
"*all" from io.read and then using gfind to break it up: 
    local pat = "(%S+)%s+(%S+)%s+(%S+)%s+"
    for n1, n2, n3 in string.gfind(io.read("*all"), pat) do
      print(math.max(n1, n2, n3))
    end

Besides the basic read patterns, you can call read with a number n as argument: In this case, read 
tries to read n characters from the input file. If it cannot read any character (end of file), read 
returns nil; otherwise, it returns a string with at most n characters. As an example of this read 
pattern, the following program is an efficient way (in Lua, of course) to copy a file from stdin to 
stdout: 
    local size = 2^13      -- good buffer size (8K)
    while true do



      local block = io.read(size)
      if not block then break end
      io.write(block)
    end

As a special case, io.read(0) works as a test for end of file: It returns an empty string if there is 
more to be read or nil otherwise. 

21.2 - The Complete I/O Model
For more control over I/O, you can use the complete model. A central concept in this model is the 
file handle, which is equivalent to streams (FILE*) in C: It represents an open file with a current 
position. 

To open a file, you use the io.open function, which mimics the fopen function in C. It receives 
as arguments the name of the file to open plus a mode string. That mode string may contain an `r´ 
for reading, a `w´ for writing (which also erases any previous content of the file), or an `a´ for 
appending, plus an optional `b´ to open binary files. The open function returns a new handle for 
the file. In case of errors, open returns nil, plus an error message and an error number: 
    print(io.open("non-existent file", "r"))
      --> nil     No such file or directory       2
    
    print(io.open("/etc/passwd", "w"))
      --> nil   Permission denied       13

The interpretation of the error numbers is system dependent. 

A typical idiom to check for errors is 
    local f = assert(io.open(filename, mode))

If the open fails, the error message goes as the second argument to assert, which then shows the 
message. 

After you open a file, you can read from it or write to it with the methods read/write. They are 
similar to the read/write functions, but you call them as methods on the file handle, using the 
colon syntax. For instance, to open a file and read it all, you can use a chunk like this: 
    local f = assert(io.open(filename, "r"))
    local t = f:read("*all")
    f:close()

The I/O library also offers handles for the three predefined C streams: io.stdin, io.stdout, 
and io.stderr. So, you can send a message directly to the error stream with a code like this: 
    io.stderr:write(message)

We can mix the complete model with the simple model. We get the current input file handle by 
calling io.input(), without arguments. We set the current input file handle with the call 
io.input(handle). (Similar calls are also valid for io.output.) For instance, if you want to 
change the current input file temporarily, you can write something like this: 
    local temp = io.input()   -- save current file
    io.input("newinput")      -- open a new current file
    ...                       -- do something with new input
    io.input():close()        -- close current file



    io.input(temp)            -- restore previous current file

21.2.1 - A Small Performance Trick
Usually, in Lua, it is much faster to read a file as a whole than to read it line by line. However, 
sometimes we must face some big files (say, tens or hundreds megabytes) for which it is not 
reasonable to read them all at once. If you want to handle such big files with maximum 
performance, the fastest way is to read them in reasonably large chunks (e.g., 8 KB each). To avoid 
the problem of breaking lines in the middle, you simply ask to read a chunk plus a line: 
    local lines, rest = f:read(BUFSIZE, "*line")

The variable rest will get the rest of any line broken by the chunk. We then concatenate the chunk 
and this rest of line. That way, the resulting chunk will always break at line boundaries. 

A typical example of that technique is this implementation of wc, a program to count the number of 
characters, words, and lines in a file: 
    local BUFSIZE = 2^13     -- 8K
    local f = io.input(arg[1])   -- open input file
    local cc, lc, wc = 0, 0, 0   -- char, line, and word counts
    while true do
      local lines, rest = f:read(BUFSIZE, "*line")
      if not lines then break end
      if rest then lines = lines .. rest .. '\n' end
      cc = cc + string.len(lines)
      -- count words in the chunk
      local _,t = string.gsub(lines, "%S+", "")
      wc = wc + t
      -- count newlines in the chunk
      _,t = string.gsub(lines, "\n", "\n")
      lc = lc + t
    end
    print(lc, wc, cc)

21.2.2 - Binary Files
The simple model functions io.input and io.output always open a file in text mode (the 
default). In Unix, there is no difference between binary files and text files. But in some systems, 
notably Windows, binary files must be opened with a special flag. To handle such binary files, you 
must use io.open, with the letter `b´ in the mode string. 

Binary data in Lua are handled similarly to text. A string in Lua may contain any bytes and almost 
all functions in the libraries can handle arbitrary bytes. (You can even do pattern matching over 
binary data, as long as the pattern does not contain a zero byte. If you want to match the byte zero, 
you can use the class %z instead.) 

Typically, you read binary data either with the *all pattern, that reads the whole file, or with the 
pattern n, that reads n bytes. As a simple example, the following program converts a text file from 
DOS format to Unix format (that is, it translates sequences of carriage return-newlines to newlines). 
It does not use the standard I/O files (stdin/stdout), because those files are open in text mode. 
Instead, it assumes that the names of the input file and the output file are given as arguments to the 
program: 
    local inp = assert(io.open(arg[1], "rb"))
    local out = assert(io.open(arg[2], "wb"))



    
    local data = inp:read("*all")
    data = string.gsub(data, "\r\n", "\n")
    out:write(data)
    
    assert(out:close())

You can call this program with the following command line: 
    > lua prog.lua file.dos file.unix

As another example, the following program prints all strings found in a binary file. The program 
assumes that a string is any zero-terminated sequence of six or more valid characters, where a valid 
character is any character accepted by the pattern validchars. In our example, that comprises 
the alphanumeric, the punctuation, and the space characters. We use concatenation and 
string.rep to create a pattern that captures all sequences of six or more validchars. The %z 
at the end of the pattern matches the byte zero at the end of a string. 
    local f = assert(io.open(arg[1], "rb"))
    local data = f:read("*all")
    local validchars = "[%w%p%s]"
    local pattern = string.rep(validchars, 6) .. "+%z"
    for w in string.gfind(data, pattern) do
      print(w)
    end

As a last example, the following program makes a dump of a binary file. Again, the first program 
argument is the input file name; the output goes to the standard output. The program reads the file in 
chunks of 10 bytes. For each chunk, it writes the hexadecimal representation of each byte, and then 
it writes the chunk as text, changing control characters to dots. 
    local f = assert(io.open(arg[1], "rb"))
    local block = 10
    while true do
      local bytes = f:read(block)
      if not bytes then break end
      for b in string.gfind(bytes, ".") do
        io.write(string.format("%02X ", string.byte(b)))
      end
      io.write(string.rep("   ", block - string.len(bytes) + 1))
      io.write(string.gsub(bytes, "%c", "."), "\n")
    end

Suppose we store that program in a file named vip; if we apply the program to itself, with the call 
    prompt> lua vip vip

it will produce an output like this (in a Unix machine): 
    6C 6F 63 61 6C 20 66 20 3D 20    local f = 
    61 73 73 65 72 74 28 69 6F 2E    assert(io.
    6F 70 65 6E 28 61 72 67 5B 31    open(arg[1
    5D 2C 20 22 72 62 22 29 29 0A    ], "rb")).
               ...
    22 25 63 22 2C 20 22 2E 22 29    "%c", ".")
    2C 20 22 5C 6E 22 29 0A 65 6E    , "\n").en
    64 0A                            d.



21.3 - Other Operations on Files
The tmpfile function returns a handle for a temporary file, open in read/write mode. That file is 
automatically removed (deleted) when your program ends. The flush function executes all 
pending writes to a file. Like the write function, you can call it as a function, io.flush(), to 
flush the current output file; or as a method, f:flush(), to flush file f. 

The seek function can be used both to get and to set the current position of a file. Its general form 
is filehandle:seek(whence, offset). The whence parameter is a string that specifies 
how the offset will be interpreted. Its valid values are "set", when offsets are interpreted from the 
beginning of the file; "cur", when offsets are interpreted from the current position of the file; and 
"end", when offsets are interpreted from the end of the file. Independently of the value of 
whence, the call returns the final current position of the file, measured in bytes from the beginning 
of the file. 

The default value for whence is "cur" and for offset is zero. Therefore, the call 
file:seek() returns the current file position, without changing it; the call 
file:seek("set") resets the position to the beginning of the file (and returns zero); and the 
call file:seek("end") sets the position to the end of the file, and returns its size. The 
following function gets the file size without changing its current position: 
    function fsize (file)
      local current = file:seek()      -- get current position
      local size = file:seek("end")    -- get file size
      file:seek("set", current)        -- restore position
      return size
    end

All the previous functions return nil plus an error message in case of errors. 

22 - The Operating System Library
The Operating System library includes functions for file manipulation, for getting the current date 
and time, and other facilities related to the operating system. It is defined in table os. This library 
pays a price for Lua portability. Because Lua is written in ANSI C, it uses only the functions that 
the ANSI standard defines. Many OS facilities, such as directory manipulation and sockets, are not 
part of this standard and therefore the system library does not provide them. There are other Lua 
libraries, not included in the main distribution, that provide extended OS access. Examples are the 
posix library, which offers all functionality of the POSIX.1 standard to Lua; and luasocket, 
for network support. 

For file manipulation, all that this library provides is an os.rename function, that changes the 
name of a file; and os.remove, that removes (deletes) a file. 

22.1 - Date and Time
Two functions, time and date, do all date and time queries in Lua. 

The time function, when called without arguments, returns the current date and time, coded as a 
number. (In most systems, that number is the number of seconds since some epoch.) When called 
with a table, it returns the number representing the date and time described by the table. Such date 



tables have the following significant fields: 

year a full year
month 01-12
day 01-31
hour 01-31
min 00-59
sec 00-59
isdst a boolean, true if daylight saving

The first three fields are mandatory; the others default to noon (12:00:00) when not provided. In a 
Unix system (where the epoch is 00:00:00 UTC, January 1, 1970) running in Rio de Janeiro (which 
is three hours west of Greenwich), we have the following examples: 
    -- obs: 10800 = 3*60*60 (3 hours)
    print(os.time{year=1970, month=1, day=1, hour=0})
      --> 10800
    print(os.time{year=1970, month=1, day=1, hour=0, sec=1})
      --> 10801
    print(os.time{year=1970, month=1, day=1})
      --> 54000   (obs: 54000 = 10800 + 12*60*60)

The date function, despite its name, is a kind of a reverse of the time function: It converts a 
number representing the date and time back to some higher-level representation. Its first parameter 
is a format string, describing the representation we want. The second is the numeric date-time; it 
defaults to the current date and time. 

To produce a date table, we use the format string "*t". For instance, the following code 
    temp = os.date("*t", 906000490)

produces the table 
    {year = 1998, month = 9, day = 16, yday = 259, wday = 4,
     hour = 23, min = 48, sec = 10, isdst = false}

Notice that, besides the fields used by os.time, the table created by os.date also gives the 
week day (wday, 1 is Sunday) and the year day (yday, 1 is January 1). 

For other format strings, os.date formats the date as a string, which is a copy of the format string 
where specific tags are replaced by information about time and date. All tags are represented by a `%
´ followed by a letter, as in the next examples: 
    print(os.date("today is %A, in %B"))
      --> today is Tuesday, in May
    print(os.date("%x", 906000490))
      --> 09/16/1998

All representations follow the current locale. Therefore, in a locale for Brazil-Portuguese, %B would 
result in "setembro" and %x in "16/09/98". 

The following table shows each tag, its meaning, and its value for September 16, 1998 (a 
Wednesday), at 23:48:10. For numeric values, the table shows also their range of possible values: 

%a abbreviated weekday name (e.g., Wed)
%A full weekday name (e.g., Wednesday)
%b abbreviated month name (e.g., Sep)



%B full month name (e.g., September)
%c date and time (e.g., 09/16/98 23:48:10)
%d day of the month (16) [01-31]
%H hour, using a 24-hour clock (23) [00-23]
%I hour, using a 12-hour clock (11) [01-12]
%M minute (48) [00-59]
%m month (09) [01-12]
%p either "am" or "pm" (pm)
%S second (10) [00-61]
%w weekday (3) [0-6 = Sunday-Saturday]
%x date (e.g., 09/16/98)
%X time (e.g., 23:48:10)
%Y full year (1998)
%y two-digit year (98) [00-99]
%% the character `%´

If you call date without any arguments, it uses the %c format, that is, complete date and time 
information in a reasonable format. Note that the representations for %x, %X, and %c change 
according to the locale and the system. If you want a fixed representation, such as mm/dd/yyyy, 
use an explicit format string, such as "%m/%d/%Y". 

The os.clock function returns the number of seconds of CPU time for the program. Its typical 
use is to benchmark a piece of code: 
    local x = os.clock()
    local s = 0
    for i=1,100000 do s = s + i end
    print(string.format("elapsed time: %.2f\n", os.clock() - x))

22.2 - Other System Calls
The os.exit function terminates the execution of a program. The os.getenv function gets the 
value of an environment variable. It receives the name of the variable and returns a string with its 
value: 
    print(os.getenv("HOME"))    --> /home/lua

If the variable is not defined, the call returns nil. The function os.execute runs a system 
command; it is equivalent to the system function in C. It receives a string with the command and 
returns an error code. For instance, both in Unix and in DOS-Windows, you can write the following 
function to create new directories: 
    function createDir (dirname)
      os.execute("mkdir " .. dirname)
    end

The os.execute function is powerful, but it is also highly system dependent. 

The os.setlocale function sets the current locale used by a Lua program. Locales define 



behavior that is sensitive to cultural or linguistic differences. The setlocale function has two 
string parameters: the locale name and a category, which specifies what features the locale will 
affect. There are six categories of locales: "collate" controls the alphabetic order of strings; 
"ctype" controls the types of individual characters (e.g., what is a letter) and the conversion 
between lower and upper cases; "monetary" has no influence in Lua programs; "numeric" 
controls how numbers are formatted; "time" controls how date and time are formatted (i.e., 
function os.date); and "all" controls all the above functions. The default category is "all", 
so that if you call setlocale with only the locale name it will set all categories. The 
setlocale function returns the locale name or nil if it fails (usually because the system does not 
support the given locale). 
    print(os.setlocale("ISO-8859-1", "collate"))   --> ISO-8859-1

The category "numeric" is a little tricky. Although Portuguese and other Latin languages use a 
comma instead of a point to represent decimal numbers, the locale does not change the way that Lua 
parses numbers (among other reasons because expressions like print(3,4) already have a 
meaning in Lua). Therefore, you may end with a system that cannot recognize numbers with 
commas, but cannot understand numbers with points either: 
    -- set locale for Portuguese-Brazil
    print(os.setlocale('pt_BR'))    --> pt_BR
    print(3,4)                      --> 3    4
    print(3.4)       --> stdin:1: malformed number near `3.4'

23 - The Debug Library
The debug library does not give you a debugger for Lua, but it offers all the primitives that you 
need for writing a debugger for Lua. For performance reasons, the official interface to these 
primitives is through the C API. The debug library in Lua is a way to access these functions directly 
within Lua code. This library declares all its functions inside the debug table. 

Unlike the other libraries, you should use the debug library with parsimony. First, some of its 
functionality is not exactly famous for performance. Second, it breaks some sacred truths of the 
language, such as that you cannot access a local variable from outside the function that created it. 
Frequently, you may not want to open this library in your final version of a product, or else you may 
want to erase it: 
    debug = nil

The debug library comprises two kinds of functions: introspective functions and hooks. 
Introspective functions allow us to inspect several aspects of the running program, such as its stack 
of active functions, current line of execution, and values and names of local variables. Hooks allow 
you to trace the execution of a program. 

An important concept in the debug library is the stack level. A stack level is a number that refers to 
a particular function that is active at that moment, that is, it has been called and has not returned yet. 
The function calling the debug library has level 1, the function that called it has level 2, and so on. 

23.1 - Introspective Facilities
The main introspective function in the debug library is the debug.getinfo function. Its first 
parameter may be a function or a stack level. When you call debug.getinfo(foo) for some 



function foo, you get a table with some data about that function. The table may have the following 
fields: 

• source --- Where the function was defined. If the function was defined in a string (through 
loadstring), source is that string. If the function was defined in a file, source is the 
file name prefixed with a `@´. 

• short_src --- A short version of source (up to 60 characters), useful for error 
messages. 

• linedefined --- The line of the source where the function was defined. 

• what --- What this function is. Options are "Lua" if foo is a regular Lua function, "C" if 
it is a C function, or "main" if it is the main part of a Lua chunk. 

• name --- A reasonable name for the function. 

• namewhat --- What the previous field means. This field may be "global", "local", 
"method", "field", or "" (the empty string). The empty string means that Lua did not 
find a name for the function. 

• nups --- Number of upvalues of that function. 

• func --- The function itself; see later. 

When foo is a C function, Lua does not have much data about it. For such functions, only the 
fields what, name, and namewhat are relevant. 

When you call debug.getinfo(n) for some number n, you get data about the function active at 
that stack level. For instance, if n is 1, you get data about the function doing the call. (When n is 0, 
you get data about getinfo itself, a C function.) If n is larger than the number of active functions 
in the stack, debug.getinfo returns nil. When you query an active function, calling 
debug.getinfo with a number, the result table has an extra field, currentline, with the line 
where the function is at that moment. Moreover, func has the function that is active at that level. 

The field name is tricky. Remember that, because functions are first-class values in Lua, a function 
may not have a name, or may have several names. Lua tries to find a name for a function by looking 
for a global variable with that value, or else looking into the code that called the function, to see 
how it was called. This second option works only when we call getinfo with a number, that is, 
we get information about a particular invocation. 

The getinfo function is not efficient. Lua keeps debug information in a form that does not impair 
program execution; efficient retrieval is a secondary goal here. To achieve better performance, 
getinfo has an optional second parameter that selects what information to get. With this 
parameter, it does not waste time collecting data that the user does not need. The format of this 
parameter is a string, where each letter selects a group of data, according to the following table: 

`n´ selects fields name and namewhat
`f´ selects field func
`S´ selects fields source, short_src, what, and linedefined
`l´ selects field currentline
`u´ selects field nup

The following function illustrates the use of debug.getinfo. It prints a primitive traceback of 
the active stack: 
    function traceback ()



      local level = 1
      while true do
        local info = debug.getinfo(level, "Sl")
        if not info then break end
        if info.what == "C" then   -- is a C function?
          print(level, "C function")
        else   -- a Lua function
          print(string.format("[%s]:%d",
                              info.short_src, info.currentline))
        end
        level = level + 1
      end
    end

It is not difficult to improve this function, including more data from getinfo. Actually, the debug 
library offers such an improved version, debug.traceback. Unlike our version, 
debug.traceback does not print its result; instead, it returns a string. 

23.1.1 - Accessing Local Variables
You can access the local variables of any active function by calling getlocal, from the debug 
library. It has two parameters: the stack level of the function you are querying and a variable index. 
It returns two values: the name and the current value of that variable. If the variable index is larger 
than the number of active variables, getlocal returns nil. If the stack level is invalid, it raises an 
error. (You can use debug.getinfo to check the validity of a stack level.) 

Lua numbers local variables in the order that they appear in a function, counting only the variables 
that are active in the current scope of the function. For instance, the code 
    function foo (a,b)
      local x
      do local c = a - b end
      local a = 1
      while true do
        local name, value = debug.getlocal(1, a)
        if not name then break end
        print(name, value)
        a = a + 1
      end
    end
    
    foo(10, 20)

will print 
    a       10
    b       20
    x       nil
    a       4

The variable with index 1 is a (the first parameter), 2 is b, 3 is x, and 4 is another a. At the point 
where getlocal is called, c is already out of scope, while name and value are not yet in scope. 
(Remember that local variables are only visible after their initialization code.) 

You can also change the values of local variables, with debug.setlocal. Its first two 
parameters are a stack level and a variable index, like in getlocal. Its third parameter is the new 
value for that variable. It returns the variable name, or nil if the variable index is out of scope. 



23.1.2 - Accessing Upvalues
The debug library also allows us to access the upvalues that a Lua function uses, with 
getupvalue. Unlike local variables, however, a function has its upvalues even when it is not 
active (this is what closures are about, after all). Therefore, the first argument for getupvalue is 
not a stack level, but a function (a closure, more precisely). The second argument is the upvalue 
index. Lua numbers upvalues in the order they are first referred in a function, but this order is not 
relevant, because a function cannot have two upvalues with the same name. 

You can also update upvalues, with debug.setupvalue. As you might expect, it has three 
parameters: a closure, an upvalue index, and the new value. Like setlocal, it returns the name of 
the upvalue, or nil if the upvalue index is out of range. 

The following code shows how we can access the value of any given variable of a calling function, 
given the variable name: 
    function getvarvalue (name)
      local value, found
    
      -- try local variables
      local i = 1
      while true do
        local n, v = debug.getlocal(2, i)
        if not n then break end
        if n == name then
          value = v
          found = true
        end
        i = i + 1
      end
      if found then return value end
    
      -- try upvalues
      local func = debug.getinfo(2).func
      i = 1
      while true do
        local n, v = debug.getupvalue(func, i)
        if not n then break end
        if n == name then return v end
        i = i + 1
      end
    
      -- not found; get global
      return getfenv(func)[name]
    end

First, we try a local variable. If there is more than one variable with the given name, we must get 
the one with the highest index; so we must always go through the whole loop. If we cannot find any 
local variable with that name, then we try upvalues. First, we get the calling function, with 
debug.getinfo(2).func, and then we traverse its upvalues. Finally, if we cannot find an 
upvalue with that name, then we get a global variable. Notice the use of the argument 2 in the calls 
to debug.getlocal and debug.getinfo to access the calling function. 



23.2 - Hooks
The hook mechanism of the debug library allows us to register a function that will be called at 
specific events as your program runs. There are four kinds of events that can trigger a hook: call 
events happen every time Lua calls a function; return events happen every time a function returns; 
line events happen when Lua starts executing a new line of code; and count events happen after a 
given number of instructions. Lua calls hooks with a single argument, a string describing the event 
that generated the call: "call", "return", "line", or "count". Moreover, for line events, it 
also passes a second argument, the new line number. We can always use debug.getinfo to get 
more information inside a hook. 

To register a hook, we call debug.sethook with two or three arguments: The first argument is 
the hook function; the second argument is a string that describes the events we want to monitor; and 
an optional third argument is a number that describes at what frequency we want to get count 
events. To monitor the call, return, and line events, we add their first letters (`c´, `r´, or `l´) in the 
mask string. To monitor the count event, we simply supply a counter as the third argument. To turn 
off hooks, we call sethook with no arguments. 

As a simple example, the following code installs a primitive tracer, which prints the number of each 
new line the interpreter executes: 
    debug.sethook(print, "l")

It simply installs print as the hook function and instructs Lua to call it only at line events. A more 
elaborated tracer can use getinfo to add the current file name to the trace: 
    function trace (event, line)
      local s = debug.getinfo(2).short_src
      print(s .. ":" .. line)
    end
    
    debug.sethook(trace, "l")

23.3 - Profiles
Despite its name, the debug library is useful for tasks other than debugging. A common such task is 
profiling. For a profile with timing, it is better to use the C interface: The overhead of a Lua call for 
each hook is too high and usually invalidates any measure. However, for counting profiles, Lua 
code does a decent job. In this section, we will develop a rudimentary profiler, which lists the 
number of times that each function in the program is called in a run. 

The main data structure of our program is a table that associates functions to their call counters and 
a table that associates functions to their names. The indices to these tables are the functions 
themselves. 
    local Counters = {}
    local Names = {}

We could retrieve the name data after the profiling, but remember that we get better results if we get 
the name of a function while it is active, because then Lua can look at the code that is calling the 
function to find its name. 

Now we define the hook function. Its job is to get the function being called and increment the 
corresponding counter; it also collects the function name: 
    local function hook ()
      local f = debug.getinfo(2, "f").func
      if Counters[f] == nil then    -- first time `f' is called?



        Counters[f] = 1
        Names[f] = debug.getinfo(2, "Sn")
      else  -- only increment the counter
        Counters[f] = Counters[f] + 1
      end
    end

The next step is to run the program with this hook. We will assume that the main chunk of the 
program is in a file and that the user gives this file name as an argument to the profiler: 
    prompt> lua profiler main-prog

With this scheme, we get the file name in arg[1], turn on the hook, and run the file: 
    local f = assert(loadfile(arg[1]))
    debug.sethook(hook, "c")  -- turn on the hook
    f()   -- run the main program
    debug.sethook()   -- turn off the hook

The last step is to show the results. The next function produces a name for a function. Because 
function names in Lua are so uncertain, we add to each function its location, given as a pair 
file:line. If a function has no name, then we use only its location. If a function is a C function, we 
use only its name (it has no location). 
    function getname (func)
      local n = Names[func]
      if n.what == "C" then
        return n.name
      end
      local loc = string.format("[%s]:%s",
                                n.short_src, n.linedefined)
      if n.namewhat ~= "" then
        return string.format("%s (%s)", loc, n.name)
      else
        return string.format("%s", loc)
      end
    end

Finally, we print each function with its counter: 
    for func, count in pairs(Counters) do
      print(getname(func), count)
    end

If we apply our profiler to the markov example that we developed in Section 10.2, we get a result 
like this: 
    [markov.lua]:4 884723
    write   10000
    [markov.lua]:0 (f)     1
    read    31103
    sub     884722
    [markov.lua]:1 (allwords)      1
    [markov.lua]:20 (prefix)       894723
    find    915824
    [markov.lua]:26 (insert)       884723
    random  10000
    sethook 1
    insert  884723

That means that the anonymous function at line 4 (which is the iterator function defined inside 
allwords) was called 884,723 times, write (io.write) was called 10,000 times, and so on. 



There are several improvements that you can make to this profiler, such as to sort the output, to 
print better function names, and to improve the output format. Nevertheless, this basic profiler is 
already useful as it is and can be used as a base for more advanced tools. 

24 - An Overview of the C API
Lua is an embedded language. That means that Lua is not a stand-alone package, but a library that 
can be linked with other applications so as to incorporate Lua facilities into these applications. 

You may be wondering: If Lua is not a stand-alone program, how come we have been using Lua 
stand alone through the whole book? The solution to this puzzle is the Lua interpreter (the 
executable lua). This interpreter is a tiny application (with less than five hundred lines of code) 
that uses the Lua library to implement the stand-alone interpreter. This program handles the 
interface with the user, taking her files and strings to feed them to the Lua library, which does the 
bulk of the work (such as actually running Lua code). 

This ability to be used as a library to extend an application is what makes Lua an extension 
language. At the same time, a program that uses Lua can register new functions in the Lua 
environment; such functions are implemented in C (or another language) and can add facilities that 
cannot be written directly in Lua. This is what makes Lua an extensible language. 

These two views of Lua (as an extension language and as an extensible language) correspond to two 
kinds of interaction between C and Lua. In the first kind, C has the control and Lua is the library. 
The C code in this kind of interaction is what we call application code. In the second kind, Lua has 
the control and C is the library. Here, the C code is called library code. Both application code and 
library code use the same API to communicate with Lua, the so called C API. 

The C API is the set of functions that allow C code to interact with Lua. It comprises functions to 
read and write Lua global variables, to call Lua functions, to run pieces of Lua code, to register C 
functions so that they can later be called by Lua code, and so on. (Throughout this text, the term 
"function" actually means "function or macro". The API implements several facilities as macros.) 

The C API follows the C modus operandi, which is quite different from Lua. When programming in 
C, we must care about type checking (and type errors), error recovery, memory-allocation errors, 
and several other sources of complexity. Most functions in the API do not check the correctness of 
their arguments; it is your responsibility to make sure that the arguments are valid before calling a 
function. If you make mistakes, you can get a "segmentation fault" error or something similar, 
instead of a well-behaved error message. Moreover, the API emphasizes flexibility and simplicity, 
sometimes at the cost of ease of use. Common tasks may involve several API calls. This may be 
boring, but it gives you full control over all details, such as error handling, buffer sizes, and the like. 

As its title says, the goal of this chapter is to give an overview of what is involved when you use 
Lua from C. Do not bother understanding all the details of what is going on now. Later we will fill 
in the details. Nevertheless, do not forget that you can find more details about specific functions in 
the Lua reference manual. Moreover, you can find several examples of the use of the API in the Lua 
distribution itself. The Lua stand-alone interpreter (lua.c) provides examples of application code, 
while the standard libraries (lmathlib.c, lstrlib.c, etc.) provide examples of library code. 

From now on, we are wearing a C programmers' hat. When we talk about "you", we mean you 
when programming in C, or you impersonated by the C code you write. 

A major component in the communication between Lua and C is an omnipresent virtual stack. 
Almost all API calls operate on values on this stack. All data exchange from Lua to C and from C to 
Lua occurs through this stack. Moreover, you can use the stack to keep intermediate results too. The 



stack helps to solve two impedance mismatches between Lua and C: The first is caused by Lua 
being garbage collected, whereas C requires explicit deallocation; the second results from the shock 
between dynamic typing in Lua versus the static typing of C. We will discuss the stack in more 
detail in Section 24.2. 

24.1 - A First Example
We will start this overview with a simple example of an application program: a stand-alone Lua 
interpreter. We can write a primitive stand-alone interpreter as follows: 

WARNING: this code is for Lua 5.0. To run it in Lua 5.1, you must change the five calls 
luaopen_*(L) to a single call to luaL_openlibs(L). 
    #include <stdio.h>
    #include <string.h>
    #include <lua.h>
    #include <lauxlib.h>
    #include <lualib.h>
    
    int main (void) {
      char buff[256];
      int error;
      lua_State *L = lua_open();   /* opens Lua */
      luaopen_base(L);             /* opens the basic library */
      luaopen_table(L);            /* opens the table library */
      luaopen_io(L);               /* opens the I/O library */
      luaopen_string(L);           /* opens the string lib. */
      luaopen_math(L);             /* opens the math lib. */
    
      while (fgets(buff, sizeof(buff), stdin) != NULL) {
        error = luaL_loadbuffer(L, buff, strlen(buff), "line") ||
                lua_pcall(L, 0, 0, 0);
        if (error) {
          fprintf(stderr, "%s", lua_tostring(L, -1));
          lua_pop(L, 1);  /* pop error message from the stack */
        }
      }
    
      lua_close(L);
      return 0;
    }

The header file lua.h defines the basic functions provided by Lua. That includes functions to 
create a new Lua environment (such as lua_open), to invoke Lua functions (such as 
lua_pcall), to read and write global variables in the Lua environment, to register new functions 
to be called by Lua, and so on. Everything defined in lua.h has the lua_ prefix. 

The header file lauxlib.h defines the functions provided by the auxiliary library (auxlib). All its 
definitions start with luaL_ (e.g., luaL_loadbuffer). The auxiliary library uses the basic API 
provided by lua.h to provide a higher abstraction level; all Lua standard libraries use the auxlib. 
The basic API strives for economy and orthogonality, whereas auxlib strives for practicality for 
common tasks. Of course, it is very easy for your program to create other abstractions that it needs, 
too. Keep in mind that the auxlib has no access to the internals of Lua. It does its entire job through 
the official basic API. 

The Lua library defines no global variables at all. It keeps all its state in the dynamic structure 
lua_State and a pointer to this structure is passed as an argument to all functions inside Lua. 



This implementation makes Lua reentrant and ready to be used in multithreaded code. 

The lua_open function creates a new environment (or state). When lua_open creates a fresh 
environment, this environment contains no predefined functions, not even print. To keep Lua 
small, all standard libraries are provided as separate packages, so that you do not have to use them if 
you do not need to. The header file lualib.h defines functions to open the libraries. The call to 
luaopen_io, for instance, creates the io table and registers the I/O functions (io.read, 
io.write, etc.) inside it. 

After creating a state and populating it with the standard libraries, it is time to interpret the user 
input. For each line the user enters, the program first calls luaL_loadbuffer to compile the 
code. If there are no errors, the call returns zero and pushes the resulting chunk on the stack. 
(Remember that we will discuss this "magic" stack in detail in the next section.) Then the program 
calls lua_pcall, which pops the chunk from the stack and runs it in protected mode. Like 
luaL_loadbuffer, lua_pcall returns zero if there are no errors. In case of errors, both 
functions push an error message on the stack; we get this message with lua_tostring and, after 
printing it, we remove it from the stack with lua_pop. 

Notice that, in case of errors, this program simply prints the error message to the standard error 
stream. Real error handling can be quite complex in C and how to do it depends on the nature of 
your application. The Lua core never writes anything directly to any output stream; it signals errors 
by returning error codes and error messages. Each application can handle these signals in a way 
most appropriate for its needs. To simplify our discussions, we will assume for now a simple error 
handler like the following one, which prints an error message, closes the Lua state, and exits from 
the whole application: 
    #include <stdarg.h>
    #include <stdio.h>
    #include <stdlib.h>
    
    void error (lua_State *L, const char *fmt, ...) {
      va_list argp;
      va_start(argp, fmt);
      vfprintf(stderr, argp);
      va_end(argp);
      lua_close(L);
      exit(EXIT_FAILURE);
    }

Later we will discuss more about error handling in the application code. 

Because you can compile Lua both as C and as C++ code, lua.h does not include this typical 
adjustment code that is present in several other C libraries: 
    #ifdef __cplusplus
    extern "C" {
    #endif
       ...
    #ifdef __cplusplus
    }
    #endif

Therefore, if you have compiled Lua as C code (the most common case) and are using it in C++, 
you must include lua.h as follows: 
    extern "C" {
    #include <lua.h>
    }



A common trick is to create a header file lua.hpp with the above code and to include this new file 
in your C++ programs. 

24.2 - The Stack
We face two problems when trying to exchange values between Lua and C: the mismatch between a 
dynamic and a static type system and the mismatch between automatic and manual memory 
management. 

In Lua, when we write a[k] = v, both k and v can have several different types (even a may have 
different types, due to metatables). If we want to offer this operation in C, however, any 
settable function must have a fixed type. We would need dozens of different functions for this 
single operation (one function for each combination of types for the three arguments). 

We could solve this problem by declaring some kind of union type in C, let us call it lua_Value, 
that could represent all Lua values. Then, we could declare settable as 
    void lua_settable (lua_Value a, lua_Value k, lua_Value v);

This solution has two drawbacks. First, it can be difficult to map such a complex type to other 
languages; Lua has been designed to interface easily not only with C/C++, but also with Java, 
Fortran, and the like. Second, Lua does garbage collection: If we keep a Lua value in a C variable, 
the Lua engine has no way to know about this use; it may (wrongly) assume that this value is 
garbage and collect it. 

Therefore, the Lua API does not define anything like a lua_Value type. Instead, it uses an 
abstract stack to exchange values between Lua and C. Each slot in this stack can hold any Lua 
value. Whenever you want to ask for a value from Lua (such as the value of a global variable), you 
call Lua, which pushes the required value on the stack. Whenever you want to pass a value to Lua, 
you first push the value on the stack, and then you call Lua (which will pop the value). We still need 
a different function to push each C type on the stack and a different function to get each value from 
the stack, but we avoid the combinatorial explosion. Moreover, because this stack is managed by 
Lua, the garbage collector knows which values C is using. 

Nearly all functions in the API use the stack. As we saw in our first example, luaL_loadbuffer 
leaves its result on the stack (either the compiled chunk or an error message); lua_pcall gets the 
function to be called from the stack and leaves any occasional error message there. 

Lua manipulates this stack in a strict LIFO discipline (Last In, First Out; that is, always through the 
top). When you call Lua, it only changes the top part of the stack. Your C code has more freedom; 
specifically, it can inspect any element inside the stack and even insert and delete elements in any 
arbitrary position. 

24.2.1 - Pushing Elements
The API has one push function for each Lua type that can be represented in C: lua_pushnil for 
the constant nil, lua_pushnumber for numbers (double), lua_pushboolean for booleans 
(integers, in C), lua_pushlstring for arbitrary strings (char *), and lua_pushstring for 
zero-terminated strings: 
    void lua_pushnil (lua_State *L);
    void lua_pushboolean (lua_State *L, int bool);
    void lua_pushnumber (lua_State *L, double n);



    void lua_pushlstring (lua_State *L, const char *s,
                                        size_t length);
    void lua_pushstring (lua_State *L, const char *s);

There are also functions to push C functions and userdata values on the stack; we will discuss them 
later. 

Strings in Lua are not zero-terminated; in consequence, they can contain arbitrary binary data and 
rely on an explicit length. The official function to push a string onto the stack is 
lua_pushlstring, which requires an explicit length as an argument. For zero-terminated 
strings, you can use also lua_pushstring, which uses strlen to supply the string length. Lua 
never keeps pointers to external strings (or to any other object, except to C functions, which are 
always static). For any string that it has to keep, Lua either makes an internal copy or reuses one. 
Therefore, you can free or modify your buffer as soon as these functions return. 

Whenever you push an element onto the stack, it is your responsibility to ensure that the stack has 
space for it. Remember, you are a C programmer now; Lua will not spoil you. When Lua starts and 
any time that Lua calls C, the stack has at least 20 free slots (this constant is defined as 
LUA_MINSTACK in lua.h). This is more than enough for most common uses, so usually we do 
not even think about that. However, some tasks may need more stack space (e.g., for calling a 
function with a variable number of arguments). In such cases, you may want to call 
    int lua_checkstack (lua_State *L, int sz);

which checks whether the stack has enough space for your needs. (More about that later.) 

24.2.2 - Querying Elements
To refer to elements in the stack, the API uses indices. The first element in the stack (that is, the 
element that was pushed first) has index 1, the next one has index 2, and so on. We can also access 
elements using the top of the stack as our reference, using negative indices. In that case, -1 refers to 
the element at the top (that is, the last element pushed), -2 to the previous element, and so on. For 
instance, the call lua_tostring(L, -1) returns the value at the top of the stack as a string. As 
we will see, there are several occasions when it is natural to index the stack from the bottom (that is, 
with positive indices) and several other occasions when the natural way is to use negative indices. 

To check whether an element has a specific type, the API offers a family of functions lua_is*, 
where the * can be any Lua type. So, there are lua_isnumber, lua_isstring, 
lua_istable, and the like. All these functions have the same prototype: 
    int lua_is... (lua_State *L, int index);

The lua_isnumber and lua_isstring functions do not check whether the value has that 
specific type, but whether the value can be converted to that type. For instance, any number satisfies 
lua_isstring. 

There is also a function lua_type, which returns the type of an element in the stack. (Some of the 
lua_is* functions are actually macros that use this function.) Each type is represented by a 
constant defined in the header file lua.h: LUA_TNIL, LUA_TBOOLEAN, LUA_TNUMBER, 
LUA_TSTRING, LUA_TTABLE, LUA_TFUNCTION, LUA_TUSERDATA, and LUA_TTHREAD. 
This function is mainly used in conjunction with a switch statement. It is also useful when we need 
to check for strings and numbers without coercions. 

To get a value from the stack, there are the lua_to* functions: 



    int            lua_toboolean (lua_State *L, int index);
    double         lua_tonumber (lua_State *L, int index);
    const char    *lua_tostring (lua_State *L, int index);
    size_t         lua_strlen (lua_State *L, int index);

It is OK to call them even when the given element does not have the correct type. In this case, 
lua_toboolean, lua_tonumber and lua_strlen return zero and the others return NULL. 
The zero is not useful, but ANSI C provides us with no invalid numeric value that we could use to 
signal errors. For the other functions, however, we frequently do not need to use the corresponding 
lua_is* function: We just call lua_to* and then test whether the result is not NULL. 

The lua_tostring function returns a pointer to an internal copy of the string. You cannot 
change it (there is a const there to remind you). Lua ensures that this pointer is valid as long as 
the corresponding value is in the stack. When a C function returns, Lua clears its stack; therefore, as 
a rule, you should never store pointers to Lua strings outside the function that got them. 

Any string that lua_tostring returns always has a zero at its end, but it can have other zeros 
inside it. The lua_strlen function returns the correct length of the string. In particular, assuming 
that the value at the top of the stack is a string, the following assertions are always valid: 
    const char *s = lua_tostring(L, -1);   /* any Lua string */
    size_t l = lua_strlen(L, -1);          /* its length */
    assert(s[l] == '\0');
    assert(strlen(s) <= l);

24.2.3 - Other Stack Operations
Besides the above functions, which interchange values between C and the stack, the API offers also 
the following operations for generic stack manipulation: 
    int   lua_gettop (lua_State *L);
    void  lua_settop (lua_State *L, int index);
    void  lua_pushvalue (lua_State *L, int index);
    void  lua_remove (lua_State *L, int index);
    void  lua_insert (lua_State *L, int index);
    void  lua_replace (lua_State *L, int index);

The lua_gettop function returns the number of elements in the stack, which is also the index of 
the top element. Notice that a negative index -x is equivalent to the positive index gettop - x 
+ 1. 

lua_settop sets the top (that is, the number of elements in the stack) to a specific value. If the 
previous top was higher than the new one, the top values are discarded. Otherwise, the function 
pushes nils on the stack to get the given size. As a particular case, lua_settop(L, 0) empties 
the stack. You can also use negative indices with lua_settop; that will set the top element to the 
given index. Using this facility, the API offers the following macro, which pops n elements from the 
stack: 
    #define lua_pop(L,n)  lua_settop(L, -(n)-1)

The lua_pushvalue function pushes on the top of the stack a copy of the element at the given 
index; lua_remove removes the element at the given index, shifting down all elements on top of 
that position to fill in the gap; lua_insert moves the top element into the given position, 
shifting up all elements on top of that position to open space; finally, lua_replace pops a value 
from the top and sets it as the value of the given index, without moving anything. Notice that the 
following operations have no effect on the stack: 



    lua_settop(L, -1);  /* set top to its current value */
    lua_insert(L, -1);  /* move top element to the top */

To illustrate the use of those functions, here is a useful helper function that dumps the entire content 
of the stack: 
    static void stackDump (lua_State *L) {
      int i;
      int top = lua_gettop(L);
      for (i = 1; i <= top; i++) {  /* repeat for each level */
        int t = lua_type(L, i);
        switch (t) {
    
          case LUA_TSTRING:  /* strings */
            printf("`%s'", lua_tostring(L, i));
            break;
    
          case LUA_TBOOLEAN:  /* booleans */
            printf(lua_toboolean(L, i) ? "true" : "false");
            break;
    
          case LUA_TNUMBER:  /* numbers */
            printf("%g", lua_tonumber(L, i));
            break;
    
          default:  /* other values */
            printf("%s", lua_typename(L, t));
            break;
    
        }
        printf("  ");  /* put a separator */
      }
      printf("\n");  /* end the listing */
    }

This function traverses the stack from bottom to top, printing each element according to its type. It 
prints strings between quotes; for numbers it uses a `%g´ format; for other values (tables, functions, 
etc.) it prints only their types (lua_typename converts a type code to a type name). 

The following program uses stackDump to further illustrate the manipulation of the API stack: 
    #include <stdio.h>
    #include <lua.h>
    
    static void stackDump (lua_State *L) {
      ...
    }
    
    int main (void) {
      lua_State *L = lua_open();
      lua_pushboolean(L, 1); lua_pushnumber(L, 10);
      lua_pushnil(L); lua_pushstring(L, "hello");
      stackDump(L);
                       /* true  10  nil  `hello'  */
    
      lua_pushvalue(L, -4); stackDump(L);
                       /* true  10  nil  `hello'  true  */
    
      lua_replace(L, 3); stackDump(L);
                       /* true  10  true  `hello'  */
    
      lua_settop(L, 6); stackDump(L);
                       /* true  10  true  `hello'  nil  nil  */



    
      lua_remove(L, -3); stackDump(L);
                       /* true  10  true  nil  nil  */
    
      lua_settop(L, -5); stackDump(L);
                       /* true  */
    
      lua_close(L);
      return 0;
    }

24.3 - Error Handling with the C API
Unlike C++ or Java, the C language does not offer an exception handling mechanism. To ameliorate 
this difficulty, Lua uses the setjmp facility from C, which results in a mechanism similar to 
exception handling. (If you compile Lua with C++, it is not difficult to change the code so that it 
uses real exceptions instead.) 

All structures in Lua are dynamic: They grow as needed, and eventually shrink again when 
possible. That means that the possibility of a memory-allocation failure is pervasive in Lua. Almost 
any operation may face this eventuality. Instead of using error codes for each operation in its API, 
Lua uses exceptions to signal these errors. That means that almost all API functions may throw an 
error (that is, call longjmp) instead of returning. 

When we write library code (that is, C functions to be called from Lua), the use of long jumps is 
almost as convenient as a real exception-handling facility, because Lua catches any occasional error. 
When we write application code (that is, C code that calls Lua), however, we must provide a way to 
catch those errors. 

24.3.1 - Error Handling in Application Code
Typically, your application code runs unprotected. Because its code is not called by Lua, Lua cannot 
set an appropriate context to catch errors (that is, it cannot call setjmp). In such environments, 
when Lua faces an error like "not enough memory", there is not much that it can do. It calls a panic 
function and, if the function returns, exits the application. (You can set your own panic function 
with the lua_atpanic function.) 

Not all API functions throw exceptions. The functions lua_open, lua_close, lua_pcall, 
and lua_load are all safe. Moreover, most other functions can only throw an exception in case of 
memory-allocation failure: For instance, luaL_loadfile fails if there is not enough memory for 
a copy of the file name. Several programs have nothing to do when they run out of memory, so they 
may ignore these exceptions. For those programs, if Lua runs out of memory, it is OK to panic. 

If you do not want your application to exit, even in case of a memory-allocation failure, then you 
must run your code in protected mode. Most (or all) of your Lua code typically runs through a call 
to lua_pcall; therefore, it runs in protected mode. Even in case of memory-allocation failure, 
lua_pcall returns an error code, leaving the interpreter in a consistent state. If you also want to 
protect all your C code that interacts with Lua, then you can use lua_cpcall. (See the reference 
manual for further details of this function; see file lua.c in the Lua distribution for an example of 
its use.) 



24.3.2 - Error Handling in Library Code
Lua is a safe language. That means that, no matter what you write, no matter how wrong it is, you 
can always understand the behavior of a program in terms of Lua itself. Moreover, errors are 
detected and explained in terms of Lua, too. You can contrast that with C, where the behavior of 
many wrong programs can only be explained in terms of the underling hardware and error positions 
are given as a program counter. 

Whenever you add new C functions to Lua, you can break that safety. For instance, a function like 
poke, which stores an arbitrary byte at an arbitrary memory address, can cause all sorts of memory 
corruption. You must strive to ensure that your add-ons are safe to Lua and provide good error 
handling. 

As we discussed earlier, each C program has its own way to handle errors. When you write library 
functions for Lua, however, there is a standard way to handle errors. Whenever a C function detects 
an error, it simply calls lua_error, (or better yet luaL_error, which formats the error 
message and then calls lua_error). The lua_error function clears whatever needs to be 
cleared in Lua and jumps back to the lua_pcall that originated that execution, passing along the 
error message. 

25 - Extending your Application
An important use of Lua is as a configuration language. In this chapter, we will illustrate how we 
can use Lua to configure a program, starting with a simple example and evolving it to perform more 
complex tasks. 

As our first task, let us imagine a simple configuration scenario: Your C program (let us call it pp) 
has a window and you want the user to be able to specify the initial window size. Clearly, for such 
simple tasks, there are several options simpler than using Lua, such as environment variables or 
files with name-value pairs. But even using a simple text file, you have to parse it somehow; so, you 
decide to use a Lua configuration file (that is, a plain text file that happens to be a Lua program). In 
its simplest form, this file can contain something like the next lines: 
    -- configuration file for program `pp'
    -- define window size
    width = 200
    height = 300

Now, you must use the Lua API to direct Lua to parse this file, and then to get the values of the 
global variables width and height. The following function does the job: 
    #include <lua.h>
    #include <lauxlib.h>
    #include <lualib.h>
    
    void load (char *filename, int *width, int *height) {
      lua_State *L = lua_open();
      luaopen_base(L);
      luaopen_io(L);
      luaopen_string(L);
      luaopen_math(L);
    
      if (luaL_loadfile(L, filename) || lua_pcall(L, 0, 0, 0))
        error(L, "cannot run configuration file: %s",
                 lua_tostring(L, -1));
    



      lua_getglobal(L, "width");
      lua_getglobal(L, "height");
      if (!lua_isnumber(L, -2))
        error(L, "`width' should be a number\n");
      if (!lua_isnumber(L, -1))
        error(L, "`height' should be a number\n");
      *width = (int)lua_tonumber(L, -2);
      *height = (int)lua_tonumber(L, -1);
    
      lua_close(L);
    }

First, it opens the Lua package and loads the standard libraries (they are optional, but usually it is a 
good idea to have them around). Then, it uses luaL_loadfile to load the chunk from file 
filename and calls lua_pcall to run it. In case of errors in any of these functions (e.g., a 
syntax error in your configuration file), the call returns a non-zero error code and pushes the error 
message onto the stack. As usual, our program uses lua_tostring with index -1 to get the 
message from the top of the stack. (We defined the error function in Section 24.1.) 

After running the chunk, the program needs to get the values of the global variables. For that, it 
calls twice lua_getglobal, whose single parameter (besides the omnipresent lua_State) is 
the variable name. Each call pushes the corresponding global value onto the top of the stack, so that 
the width will be at index -2 and the height at index -1 (at the top). (Because the stack was 
previously empty, you could also index from the bottom, using 1 from the first value and 2 from the 
second. By indexing from the top, however, your code would work even if the stack was not 
empty.) Next, our example uses lua_isnumber to check whether each value is numeric. It then 
uses lua_tonumber to convert such values to double and C does the coercion to int. Finally, 
it closes the Lua state and returns. 

Is it worth using Lua? As I said before, for such simple tasks, a simple file with only two numbers 
in it would be much easier to use than Lua. Even so, the use of Lua brings some advantages. First, 
Lua handles all syntax details (and errors) for you; your configuration file can even have comments! 
Second, the user is already able to do more complex configurations with it. For instance, the script 
may prompt the user for some information, or it can query an environment variable to choose a 
proper size: 
    -- configuration file for program `pp'
    if getenv("DISPLAY") == ":0.0" then
      width = 300; height = 300
    else
      width = 200; height = 200
    end

Even in such simple configuration scenarios, it is hard to anticipate what users will want; but as 
long as the script defines the two variables, your C application works without changes. 

A final reason for using Lua is that now it is easy to add new configuration facilities to your 
program; this easiness creates an attitude that results in programs that are more flexible. 

25.1 - Table Manipulation
Let us adopt that attitude: Now, we want to configure a background color for the window, too. We 
will assume that the final color specification is composed of three numbers, where each number is a 
color component in RGB. Usually, in C, those numbers are integers in some range like [0,255]. In 
Lua, because all numbers are real, we can use the more natural range [0,1]. 



A naive approach here is to ask the user to set each component in a different global variable: 
    -- configuration file for program `pp'
    width = 200
    height = 300
    background_red = 0.30
    background_green = 0.10
    background_blue = 0

This approach has two drawbacks: It is too verbose (real programs may need dozens of different 
colors, for window background, window foreground, menu background, etc.); and there is no way 
to predefine common colors, so that, later, the user can simply write something like background 
= WHITE. To avoid these drawbacks, we will use a table to represent a color: 
    background = {r=0.30, g=0.10, b=0}

The use of tables gives more structure to the script; now it is easy for the user (or for the 
application) to predefine colors for later use in the configuration file: 
    BLUE = {r=0, g=0, b=1}
    ...
    background = BLUE

To get these values in C, we can do as follows: 
    lua_getglobal(L, "background");
    if (!lua_istable(L, -1))
      error(L, "`background' is not a valid color table");
    
    red = getfield("r");
    green = getfield("g");
    blue = getfield("b");

As usual, we first get the value of the global variable background and ensure that it is a table. 
Next, we use getfield to get each color component. This function is not part of the API; we 
must define it, as follows: 
    #define MAX_COLOR       255
    
    /* assume that table is on the stack top */
    int getfield (const char *key) {
      int result;
      lua_pushstring(L, key);
      lua_gettable(L, -2);  /* get background[key] */
      if (!lua_isnumber(L, -1))
        error(L, "invalid component in background color");
      result = (int)lua_tonumber(L, -1) * MAX_COLOR;
      lua_pop(L, 1);  /* remove number */
      return result;
    }

Again, we face the problem of polymorphism: There are potentially many versions of getfield 
functions, varying the key type, value type, error handling, etc. The Lua API offers a single 
function, lua_gettable. It receives the position of the table in the stack, pops the key from the 
stack, and pushes the corresponding value. Our private getfield assumes that the table is on the 
top of the stack; so, after pushing the key (lua_pushstring), the table will be at index -2. 
Before returning, getfield pops the retrieved value from the stack, to leave the stack at the same 
level that it was before the call. 

We will extend our example a little further and introduce color names for the user. The user can still 



use color tables, but she can also use predefined names for the more common colors. To implement 
this feature, we need a color table in our C application: 
    struct ColorTable {
      char *name;
      unsigned char red, green, blue;
    } colortable[] = {
      {"WHITE",   MAX_COLOR, MAX_COLOR, MAX_COLOR},
      {"RED",     MAX_COLOR,   0,   0},
      {"GREEN",     0, MAX_COLOR,   0},
      {"BLUE",      0,   0, MAX_COLOR},
      {"BLACK",     0, 0, 0},
      ...
      {NULL,        0, 0, 0}  /* sentinel */
    };

Our implementation will create global variables with the color names and initialize these variables 
using color tables. The result is the same as if the user had the following lines in her script: 
    WHITE = {r=1, g=1, b=1}
    RED   = {r=1, g=0, b=0}
    ...

The only difference from these user-defined colors is that the application defines these colors in C, 
before running the user script. 

To set the table fields, we define an auxiliary function, setfield; it pushes the index and the field 
value on the stack, and then calls lua_settable: 
    /* assume that table is at the top */
    void setfield (const char *index, int value) {
      lua_pushstring(L, index);
      lua_pushnumber(L, (double)value/MAX_COLOR);
      lua_settable(L, -3);
    }

Like other API functions, lua_settable works for many different types, so it gets all its 
operands from the stack. It receives the table index as an argument and pops the key and the value. 
The setfield function assumes that before the call the table is at the top of the stack (index -1); 
after pushing the index and the value, the table will be at index -3. 

The setcolor function defines a single color. It must create a table, set the appropriate fields, and 
assign this table to the corresponding global variable: 
    void setcolor (struct ColorTable *ct) {
      lua_newtable(L);               /* creates a table */
      setfield("r", ct->red);        /* table.r = ct->r */
      setfield("g", ct->green);      /* table.g = ct->g */
      setfield("b", ct->blue);       /* table.b = ct->b */
      lua_setglobal(L, ct->name);    /* `name' = table */
    }

The lua_newtable function creates an empty table and pushes it on the stack; the setfield 
calls set the table fields; finally, lua_setglobal pops the table and sets it as the value of the 
global with the given name. 

With those previous functions, the following loop will register all colors in the application's global 
environment: 
    int i = 0;
    while (colortable[i].name != NULL)
      setcolor(&colortable[i++]);



Remember that the application must execute this loop before running the user script. 

There is another option for implementing named colors. Instead of global variables, the user can 
denote color names with strings, writing her settings as background = "BLUE". Therefore, 
background can be either a table or a string. With this implementation, the application does not 
need to do anything before running the user's script. Instead, it needs more work to get a color. 
When it gets the value of the variable background, it has to test whether the value has type 
string, and then look up the string in the color table: 
    lua_getglobal(L, "background");
    if (lua_isstring(L, -1)) {
      const char *name = lua_tostring(L, -1);
      int i = 0;
      while (colortable[i].name != NULL &&
             strcmp(colorname, colortable[i].name) != 0)
        i++;
      if (colortable[i].name == NULL)  /* string not found? */
        error(L, "invalid color name (%s)", colorname);
      else {  /* use colortable[i] */
        red = colortable[i].red;
        green = colortable[i].green;
        blue = colortable[i].blue;
      }
    } else if (lua_istable(L, -1)) {
      red = getfield("r");
      green = getfield("g");
      blue = getfield("b");
    } else
        error(L, "invalid value for `background'");

What is the best option? In C programs, the use of strings to denote options is not a good practice, 
because the compiler cannot detect misspellings. In Lua, however, global variables do not need 
declarations, so Lua does not signal any error when a user misspells a color name. If the user writes 
WITE instead of WHITE, the background variable receives nil (the value of WITE, a variable not 
initialized), and that is all that the application knows: that background is nil. There is no other 
information about what is wrong. With strings, on the other hand, the value of background 
would be the misspelled string; so, the application can add that information to the error message. 
The application can also compare strings regardless of case, so that a user can write "white", 
"WHITE", or even "White". Moreover, if the user script is small and there are many colors, it 
may be odd to register hundreds of colors (and to create hundreds of tables and global variables) 
only for the user to choose a few. With strings, you avoid this overhead. 

25.2 - Calling Lua Functions
A great strength of Lua is that a configuration file can define functions to be called by the 
application. For instance, you can write an application to plot the graph of a function and use Lua to 
define the functions to be plotted. 

The API protocol to call a function is simple: First, you push the function to be called; second, you 
push the arguments to the call; then you use lua_pcall to do the actual call; finally, you pop the 
results from the stack. 

As an example, let us assume that our configuration file has a function like 
    function f (x, y)
      return (x^2 * math.sin(y))/(1 - x)
    end



and you want to evaluate, in C, z = f(x, y) for given x and y. Assuming that you have already 
opened the Lua library and run the configuration file, you can encapsulate this call in the following 
C function: 
    /* call a function `f' defined in Lua */
    double f (double x, double y) {
      double z;
    
      /* push functions and arguments */
      lua_getglobal(L, "f");  /* function to be called */
      lua_pushnumber(L, x);   /* push 1st argument */
      lua_pushnumber(L, y);   /* push 2nd argument */
    
      /* do the call (2 arguments, 1 result) */
      if (lua_pcall(L, 2, 1, 0) != 0)
        error(L, "error running function `f': %s",
                 lua_tostring(L, -1));
    
      /* retrieve result */
      if (!lua_isnumber(L, -1))
        error(L, "function `f' must return a number");
      z = lua_tonumber(L, -1);
      lua_pop(L, 1);  /* pop returned value */
      return z;
    }

You call lua_pcall with the number of arguments you are passing and the number of results you 
want. The fourth argument indicates an error-handling function; we will discuss it in a moment. As 
in a Lua assignment, lua_pcall adjusts the actual number of results to what you have asked for, 
pushing nils or discarding extra values as needed. Before pushing the results, lua_pcall removes 
from the stack the function and its arguments. If a function returns multiple results, the first result is 
pushed first; so, if there are n results, the first one will be at index -n and the last at index -1. 

If there is any error while lua_pcall is running, lua_pcall returns a value different from 
zero; moreover, it pushes the error message on the stack (but still pops the function and its 
arguments). Before pushing the message, however, lua_pcall calls the error handler function, if 
there is one. To specify an error handler function, we use the last argument of lua_pcall. A zero 
means no error handler function; that is, the final error message is the original message. Otherwise, 
that argument should be the index in the stack where the error handler function is located. Notice 
that, in such cases, the handler must be pushed in the stack before the function to be called and its 
arguments. 

For normal errors, lua_pcall returns the error code LUA_ERRRUN. Two special kinds of errors 
deserve different codes, because they never run the error handler. The first kind is a memory 
allocation error. For such errors, lua_pcall always returns LUA_ERRMEM. The second kind is an 
error while Lua is running the error handler itself. In that case it is of little use to call the error 
handler again, so lua_pcall returns immediately with a code LUA_ERRERR. 

25.3 - A Generic Call Function
As a more advanced example, we will build a wrapper for calling Lua functions, using the vararg 
facility in C. Our wrapper function (let us call it call_va) receives the name of the function to be 
called, a string describing the types of the arguments and results, then the list of arguments, and 
finally a list of pointers to variables to store the results; it handles all the details of the API. With 
this function, we could write our previous example simply as 



    call_va("f", "dd>d", x, y, &z);

where the string "dd>d" means "two arguments of type double, one result of type double". This 
descriptor can use the letters `d´ for double, `i´ for integer, and `s´ for strings; a `>´ separates 
arguments from the results. If the function has no results, the `>´ is optional. 
    #include <stdarg.h>
    
    void call_va (const char *func, const char *sig, ...) {
      va_list vl;
      int narg, nres;  /* number of arguments and results */
    
      va_start(vl, sig);
      lua_getglobal(L, func);  /* get function */
    
      /* push arguments */
      narg = 0;
      while (*sig) {  /* push arguments */
        switch (*sig++) {
    
          case 'd':  /* double argument */
            lua_pushnumber(L, va_arg(vl, double));
            break;
    
          case 'i':  /* int argument */
            lua_pushnumber(L, va_arg(vl, int));
            break;
    
          case 's':  /* string argument */
            lua_pushstring(L, va_arg(vl, char *));
            break;
    
          case '>':
            goto endwhile;
    
          default:
            error(L, "invalid option (%c)", *(sig - 1));
        }
        narg++;
        luaL_checkstack(L, 1, "too many arguments");
      } endwhile:
    
      /* do the call */
      nres = strlen(sig);  /* number of expected results */
      if (lua_pcall(L, narg, nres, 0) != 0)  /* do the call */
        error(L, "error running function `%s': %s",
                 func, lua_tostring(L, -1));
    
      /* retrieve results */
      nres = -nres;  /* stack index of first result */
      while (*sig) {  /* get results */
        switch (*sig++) {
    
          case 'd':  /* double result */
            if (!lua_isnumber(L, nres))
              error(L, "wrong result type");
            *va_arg(vl, double *) = lua_tonumber(L, nres);
            break;
    
          case 'i':  /* int result */
            if (!lua_isnumber(L, nres))
              error(L, "wrong result type");
            *va_arg(vl, int *) = (int)lua_tonumber(L, nres);



            break;
    
          case 's':  /* string result */
            if (!lua_isstring(L, nres))
              error(L, "wrong result type");
            *va_arg(vl, const char **) = lua_tostring(L, nres);
            break;
    
          default:
            error(L, "invalid option (%c)", *(sig - 1));
        }
        nres++;
      }
      va_end(vl);
    }

Despite its generality, this function follows the same steps of our previous example: It pushes the 
function, pushes the arguments, does the call, and gets the results. Most of its code is 
straightforward, but there are some subtleties. First, it does not need to check whether func is a 
function; lua_pcall will trigger any occasional error. Second, because it pushes an arbitrary 
number of arguments, it must check the stack space. Third, because the function may return strings, 
call_va cannot pop the results from the stack. It is up to the caller to pop them, after it finishes 
using occasional string results (or after copying them to other buffers). 

26 - Calling C from Lua
One of the basic means for extending Lua is for the application to register new C functions into 
Lua. 

When we say that Lua can call C functions, this does not mean that Lua can call any C function. 
(There are packages that allow Lua to call any C function, but they are neither portable nor robust.) 
As we saw previously, when C calls a Lua function, it must follow a simple protocol to pass the 
arguments and to get the results. Similarly, for a C function to be called from Lua, it must follow a 
protocol to get its arguments and to return its results. Moreover, for a C function to be called from 
Lua, we must register it, that is, we must give its address to Lua in an appropriate way. 

When Lua calls a C function, it uses the same kind of stack that C uses to call Lua. The C function 
gets its arguments from the stack and pushes the results on the stack. To distinguish the results from 
other values on the stack, the function returns (in C) the number of results it is leaving on the stack. 
An important concept here is that the stack is not a global structure; each function has its own 
private local stack. When Lua calls a C function, the first argument will always be at index 1 of this 
local stack. Even when a C function calls Lua code that calls the same (or another) C function 
again, each of these invocations sees only its own private stack, with its first argument at index 1. 

26.1 - C Functions
As a first example, let us see how to implement a simplified version of a function that returns the 
sine of a given number (a more professional implementation should check whether its argument is a 
number): 
    static int l_sin (lua_State *L) {
      double d = lua_tonumber(L, 1);  /* get argument */
      lua_pushnumber(L, sin(d));  /* push result */



      return 1;  /* number of results */
    }

Any function registered with Lua must have this same prototype, defined as lua_CFunction in 
lua.h: 
    typedef int (*lua_CFunction) (lua_State *L);

From the point of view of C, a C function gets as its single argument the Lua state and returns (in C) 
an integer with the number of values it is returning (in Lua). Therefore, the function does not need 
to clear the stack before pushing its results. After it returns, Lua automatically removes whatever is 
in the stack below the results. 

Before we can use this function from Lua, we must register it. We do this magic with 
lua_pushcfunction: It gets a pointer to a C function and creates a value of type 
"function" to represent this function inside Lua. A quick-and-dirty way to test l_sin is to put 
its code directly into the file lua.c and add the following lines right after the call to lua_open: 
    lua_pushcfunction(l, l_sin);
    lua_setglobal(l, "mysin");

The first line pushes a value of type function. The second line assigns it to the global variable 
mysin. After these modifications, you rebuild your Lua executable; then you can use the new 
function mysin in your Lua programs. In the next section, we will discuss better ways to link new 
C functions with Lua. 

For a more professional sine function, we must check the type of its argument. Here, the auxiliary 
library helps us. The luaL_checknumber function checks whether a given argument is a 
number: In case of errors, it throws an informative error message; otherwise, it returns the number. 
The modification in our function is minimal: 
    static int l_sin (lua_State *L) {
      double d = luaL_checknumber(L, 1);
      lua_pushnumber(L, sin(d));
      return 1;  /* number of results */
    }

With the above definition, if you call mysin('a'), you get the message 
    bad argument #1 to `mysin' (number expected, got string)

Notice how luaL_checknumber automatically fills the message with the argument number (1), 
the function name ("mysin"), the expected parameter type ("number"), and the actual parameter 
type ("string"). 

As a more complex example, let us write a function that returns the contents of a given directory. 
Lua does not provide this function in its standard libraries, because ANSI C does not have functions 
for this job. Here, we will assume that we have a POSIX compliant system. Our function, dir, gets 
as argument a string with the directory path and returns an array with the directory entries. For 
instance, a call dir("/home/lua") may return the table {".", "..", "src", "bin", 
"lib"}. In case of errors, the function returns nil plus a string with the error message. 
    #include <dirent.h>
    #include <errno.h>
    
    static int l_dir (lua_State *L) {
      DIR *dir;
      struct dirent *entry;
      int i;



      const char *path = luaL_checkstring(L, 1);
    
      /* open directory */
      dir = opendir(path);
      if (dir == NULL) {  /* error opening the directory? */
        lua_pushnil(L);  /* return nil and ... */
        lua_pushstring(L, strerror(errno));  /* error message */
        return 2;  /* number of results */
      }
    
      /* create result table */
      lua_newtable(L);
      i = 1;
      while ((entry = readdir(dir)) != NULL) {
        lua_pushnumber(L, i++);  /* push key */
        lua_pushstring(L, entry->d_name);  /* push value */
        lua_settable(L, -3);
      }
    
      closedir(dir);
      return 1;  /* table is already on top */
    }

The luaL_checkstring function, from the auxiliary library, is the equivalent of 
luaL_checknumber for strings. 

(In extreme conditions, that implementation of l_dir may cause a small memory leak. Three of 
the Lua functions it calls can fail due to insufficient memory: lua_newtable, 
lua_pushstring, and lua_settable. If any of these calls fails, it will raise an error and 
interrupt l_dir, which therefore will not call closedir. As we discussed earlier, on most 
programs this is not a big problem: If the program runs out of memory, the best it can do is to shut 
down anyway. Nevertheless, in Chapter 29 we will see an alternative implementation for a directory 
function that avoids this problem.) 

26.2 - C Libraries
A Lua library is a chunk that defines several Lua functions and stores them in appropriate places, 
typically as entries in a table. A C library for Lua mimics this behavior. Besides the definition of its 
C functions, it must also define a special function that corresponds to the main chunk of a Lua 
library. Once called, this function registers all C functions of the library and stores them in 
appropriate places. Like a Lua main chunk, it also initializes anything else that needs initialization 
in the library. 

Lua "sees" C functions through this registration process. Once a C function is represented and 
stored in Lua, a Lua program calls it through direct reference to its address (which is what we give 
to Lua when we register a function). In other words, Lua does not depend on a function name, 
package location, or visibility rules to call a function, once it is registered. Typically, a C library has 
one single public (extern) function, which is the function that opens the library. All other functions 
may be private, declared as static in C. 

When you extend Lua with C functions, it is a good idea to design your code as a C library, even 
when you want to register only one C function: Sooner or later (usually sooner) you will need other 
functions. As usual, the auxiliary library offers a helper function for this job. The luaL_openlib 
function receives a list of C functions and their respective names and registers all of them inside a 
table with the library name. As an example, suppose we want to create a library with the l_dir 
function that we defined earlier. First, we must define the library functions: 



    static int l_dir (lua_State *L) {
       ...  /* as before */
    }

Next, we declare an array with all functions and their respective names. This array has elements of 
type luaL_reg, which is a structure with two fields: a string and a function pointer. 
    static const struct luaL_reg mylib [] = {
      {"dir", l_dir},
      {NULL, NULL}  /* sentinel */
    };

In our example, there is only one function (l_dir) to declare. Notice that the last pair in the array 
must be {NULL, NULL}, to signal its end. Finally, we declare a main function, using 
luaL_openlib: 
    int luaopen_mylib (lua_State *L) {
      luaL_openlib(L, "mylib", mylib, 0);
      return 1;
    }

The second argument to luaL_openlib is the library name. This function creates (or reuses) a 
table with the given name, and fills it with the pairs name-function specified by the array mylib. 
The luaL_openlib function also allows us to register common upvalues for all functions in a 
library. For now, we are not using upvalues, so the last argument in the call is zero. When it returns, 
luaL_openlib leaves on the stack the table wherein it opened the library. The 
luaopen_mylib function returns 1 to return this value to Lua. (As with Lua libraries, this return 
is optional, because the library is already assigned to a global variable. Again, like in Lua libraries, 
it costs nothing, and may be useful occasionally.) 

After finishing the library, we must link it to the interpreter. The most convenient way to do it is 
with the dynamic linking facility, if your Lua interpreter supports this facility. (Remember the 
discussion about dynamic linking in Section 8.2.) In this case, you must create a dynamic library 
with your code (a .dll file in Windows, a .so file in Linux). After that, you can load your library 
directly from within Lua, with loadlib. The call 
    mylib = loadlib("fullname-of-your-library", "luaopen_mylib")

transforms the luaopen_mylib function into a C function inside Lua and assigns this function to 
mylib. (That explains why luaopen_mylib must have the same prototype as any other C 
function.) Next, the call mylib() runs luaopen_mylib, opening the library. 

If your interpreter does not support dynamic linking, then you have to recompile Lua with your new 
library. Besides that, you need some way to tell the stand-alone interpreter that it should open this 
library when it opens a new state. Some macros facilitate this task. First, you must create a header 
file (let us call it mylib.h) with the following content: 
    int luaopen_mylib (lua_State *L);
    
    #define LUA_EXTRALIBS { "mylib", luaopen_mylib },

The first line declares the open function. The next line defines the macro LUA_EXTRALIBS as a 
new entry in the array of functions that the interpreter calls when it creates a new state. (This array 
has type struct luaL_reg[], so we need to put a name there.) 

To include this header file in the interpreter, you can define the macro LUA_USERCONFIG in your 
compiler options. For a command-line compiler, you typically must add an option like 



    -DLUA_USERCONFIG=\"mylib.h\"

(The backslashes protect the quotes from the shell; those quotes are necessary in C when we specify 
an include file name.) In an integrated development environment, you must add something similar 
in the project settings. Then, when you re-compile lua.c, it includes mylib.h, and therefore 
uses the new definition of LUA_EXTRALIBS in the list of libraries to open. 

27 - Techniques for Writing C Functions
Both the official API and the auxiliary library provide several mechanisms to help writing C 
functions. In this chapter, we cover special mechanisms for array manipulation, for string 
manipulation, and for storing Lua values in C. 

27.1 - Array Manipulation
"Array", in Lua, is just a name for a table used in a specific way. We can manipulate arrays using 
the same functions we use to manipulate tables, namely lua_settable and lua_gettable. 
However, contrary to the general philosophy of Lua, economy and simplicity, the API provides 
special functions for array manipulation. The reason for that is performance: Frequently we have an 
array access operation inside the inner loop of an algorithm (e.g., sorting), so that any performance 
gain in this operation can have a big impact on the overall performance of the function. 

The functions that the API provides for array manipulation are 
    void lua_rawgeti (lua_State *L, int index, int key);
    void lua_rawseti (lua_State *L, int index, int key);

The description of lua_rawgeti and lua_rawseti is a little confusing, as it involves two 
indices: index refers to where the table is in the stack; key refers to where the element is in the 
table. The call lua_rawgeti(L, t, key) is equivalent to the sequence 
    lua_pushnumber(L, key);
    lua_rawget(L, t);

when t is positive (otherwise, you must compensate for the new item in the stack). The call 
lua_rawseti(L, t, key) (again for t positive) is equivalent to 
    lua_pushnumber(L, key);
    lua_insert(L, -2);  /* put `key' below previous value */
    lua_rawset(L, t);

Note that both functions use raw operations. They are faster and, anyway, tables used as arrays 
seldom use metamethods. 

As a concrete example of the use of these functions, we could rewrite the loop body from our 
previous l_dir function from 
        lua_pushnumber(L, i++);  /* key */
        lua_pushstring(L, entry->d_name);  /* value */
        lua_settable(L, -3);

to 
        lua_pushstring(L, entry->d_name);  /* value */



        lua_rawseti(L, -2, i++);  /* set table at key `i' */

As a more complete example, the following code implements the map function: It applies a given 
function to all elements of an array, replacing each element by the result of the call. 
    int l_map (lua_State *L) {
      int i, n;
    
      /* 1st argument must be a table (t) */
      luaL_checktype(L, 1, LUA_TTABLE);
    
      /* 2nd argument must be a function (f) */
      luaL_checktype(L, 2, LUA_TFUNCTION);
    
      n = luaL_getn(L, 1);  /* get size of table */
    
      for (i=1; i<=n; i++) {
        lua_pushvalue(L, 2);   /* push f */
        lua_rawgeti(L, 1, i);  /* push t[i] */
        lua_call(L, 1, 1);     /* call f(t[i]) */
        lua_rawseti(L, 1, i);  /* t[i] = result */
      }
    
      return 0;  /* no results */
    }

This example introduces three new functions. The luaL_checktype function (from 
lauxlib.h) ensures that a given argument has a given type; otherwise, it raises an error. The 
luaL_getn function gets the size of the array at the given index (table.getn calls 
luaL_getn to do its job). The lua_call function does an unprotected call. It is similar to 
lua_pcall, but in case of errors it throws the error, instead of returning an error code. When you 
are writing the main code in an application, you should not use lua_call, because you want to 
catch any errors. When you are writing functions, however, it is usually a good idea to use 
lua_call; if there is an error, just leave it to someone that cares about it. 

27.2 - String Manipulation
When a C function receives a string argument from Lua, there are only two rules that it must 
observe: Not to pop the string from the stack while accessing it and never to modify the string. 

Things get more demanding when a C function needs to create a string to return to Lua. Now, it is 
up to the C code to take care of buffer allocation/deallocation, buffer overflow, and the like. 
Nevertheless, the Lua API provides some functions to help with those tasks. 

The standard API provides support for two of the most basic string operations: substring extraction 
and string concatenation. To extract a substring, remember that the basic operation 
lua_pushlstring gets the string length as an extra argument. Therefore, if you want to pass to 
Lua a substring of a string s ranging from position i to j (inclusive), all you have to do is 
    lua_pushlstring(L, s+i, j-i+1);

As an example, suppose you want a function that splits a string according to a given separator (a 
single character) and returns a table with the substrings. For instance, the call 
    split("hi,,there", ",")

should return the table {"hi", "", "there"}. We could write a simple implementation as 



follows. It needs no extra buffers and puts no constraints on the size of the strings it can handle. 
    static int l_split (lua_State *L) {
      const char *s = luaL_checkstring(L, 1);
      const char *sep = luaL_checkstring(L, 2);
      const char *e;
      int i = 1;
    
      lua_newtable(L);  /* result */
    
      /* repeat for each separator */
      while ((e = strchr(s, *sep)) != NULL) {
        lua_pushlstring(L, s, e-s);  /* push substring */
        lua_rawseti(L, -2, i++);
        s = e + 1;  /* skip separator */
      }
    
      /* push last substring */
      lua_pushstring(L, s);
      lua_rawseti(L, -2, i);
    
      return 1;  /* return the table */
    }

To concatenate strings, Lua provides a specific function in its API, called lua_concat. It is 
equivalent to the .. operator in Lua: It converts numbers to strings and triggers metamethods when 
necessary. Moreover, it can concatenate more than two strings at once. The call lua_concat(L, 
n) will concatenate (and pop) the n values at the top of the stack and leave the result on the top. 

Another helpful function is lua_pushfstring: 
    const char *lua_pushfstring (lua_State *L,
                                 const char *fmt, ...);

It is somewhat similar to the C function sprintf, in that it creates a string according to a format 
string and some extra arguments. Unlike sprintf, however, you do not need to provide a buffer. 
Lua dynamically creates the string for you, as large as it needs to be. There are no worries about 
buffer overflow and the like. The function pushes the resulting string on the stack and returns a 
pointer to it. Currently, this function accepts only the directives %% (for the character `%´), %s (for 
strings), %d (for integers), %f (for Lua numbers, that is, doubles), and %c (accepts an integer and 
formats it as a character). It does not accept any options (such as width or precision). 

Both lua_concat and lua_pushfstring are useful when we want to concatenate only a few 
strings. However, if we need to concatenate many strings (or characters) together, a one-by-one 
approach can be quite inefficient, as we saw in Section 11.6. Instead, we can use the buffer facilities 
provided by the auxiliary library. Auxlib implements these buffers in two levels. The first level is 
similar to buffers in I/O operations: It collects small strings (or individual characters) in a local 
buffer and passes them to Lua (with lua_pushlstring) when the buffer fills up. The second 
level uses lua_concat and a variant of the stack algorithm that we saw in Section 11.6 to 
concatenate the results of multiple buffer flushes. 

To describe the buffer facilities from auxlib in more detail, let us see a simple example of its use. 
The next code shows the implementation of string.upper, right from the file lstrlib.c: 
    static int str_upper (lua_State *L) {
      size_t l;
      size_t i;
      luaL_Buffer b;
      const char *s = luaL_checklstr(L, 1, &l);
      luaL_buffinit(L, &b);



      for (i=0; i<l; i++)
        luaL_putchar(&b, toupper((unsigned char)(s[i])));
      luaL_pushresult(&b);
      return 1;
    }

The first step for using a buffer from auxlib is to declare a variable with type luaL_Buffer, and 
then to initialize it with a call to luaL_buffinit. After the initialization, the buffer keeps a copy 
of the state L, so we do not need to pass it when calling other functions that manipulate the buffer. 
The macro luaL_putchar puts a single character into the buffer. Auxlib also offers 
luaL_addlstring, to put a string with an explicit length into the buffer, and 
luaL_addstring, to put a zero-terminated string. Finally, luaL_pushresult flushes the 
buffer and leaves the final string on the top of the stack. The prototypes of those functions are as 
follows: 
    void luaL_buffinit (lua_State *L, luaL_Buffer *B);
    void luaL_putchar (luaL_Buffer *B, char c);
    void luaL_addlstring (luaL_Buffer *B, const char *s,
                                          size_t l);
    void luaL_addstring (luaL_Buffer *B, const char *s);
    void luaL_pushresult (luaL_Buffer *B);

Using these functions, we do not have to worry about buffer allocation, overflows, and other such 
details. As we saw, the concatenation algorithm is quite efficient. The str_upper function 
handles huge strings (more than 1 MB) without any problem. 

When you use the auxlib buffer, you have to worry about one detail. As you put things into the 
buffer, it keeps some intermediate results in the Lua stack. Therefore, you cannot assume that the 
stack top will remain where it was before you started using the buffer. Moreover, although you can 
use the stack for other tasks while using a buffer (even to build another buffer), the push/pop count 
for these uses must be balanced every time you access the buffer. There is one obvious situation 
where this restriction is too severe, namely when you want to put into the buffer a string returned 
from Lua. In such cases, you cannot pop the string before adding it to the buffer, because you 
should never use a string from Lua after popping it from the stack; but also you cannot add the 
string to the buffer before popping it, because then the stack would be in the wrong level. In other 
words, you cannot do something like this: 
    luaL_addstring(&b, lua_tostring(L, 1));   /* BAD CODE */

Because this is a common situation, auxlib provides a special function to add the value on the top of 
the stack into the buffer: 
    void luaL_addvalue (luaL_Buffer *B);

Of course, it is an error to call this function if the value on the top is not a string or a number 

27.3 - Storing State in C Functions
Frequently, C functions need to keep some non-local data, that is, data that outlive their invocation. 
In C, we typically use global or static variables for that need. When you are programming library 
functions for Lua, however, global and static variables are not a good approach. First, you cannot 
store a generic Lua value in a C variable. Second, a library that uses such variables cannot be used 
in multiple Lua states. 

An alternative approach is to store such values into Lua global variables. This approach solves the 



two previous problems. Lua global variables store any Lua value and each independent state has its 
own independent set of global variables. However, this is not always a satisfactory solution, because 
Lua code can tamper with those global variables and therefore compromise the integrity of C data. 
To avoid this problem, Lua offers a separate table, called the registry, that C code can freely use, but 
Lua code cannot access. 

27.3.1 - The Registry
The registry is always located at a pseudo-index, whose value is defined by 
LUA_REGISTRYINDEX. A pseudo-index is like an index into the stack, except that its associated 
value is not in the stack. Most functions in the Lua API that accept indices as arguments also accept 
pseudo-indices---the exceptions being those functions that manipulate the stack itself, such as 
lua_remove and lua_insert. For instance, to get a value stored with key "Key" in the 
registry, you can use the following code: 
    lua_pushstring(L, "Key");
    lua_gettable(L, LUA_REGISTRYINDEX);

The registry is a regular Lua table. As such, you can index it with any Lua value but nil. However, 
because all C libraries share the same registry, you must choose with care what values you use as 
keys, to avoid collisions. A bulletproof method is to use as key the address of a static variable in 
your code: The C link editor ensures that this key is unique among all libraries. To use this option, 
you need the function lua_pushlightuserdata, which pushes on the Lua stack a value 
representing a C pointer. The following code shows how to store and retrieve a number from the 
registry using this method: 
    /* variable with an unique address */
    static const char Key = 'k';
    
    /* store a number */
    lua_pushlightuserdata(L, (void *)&Key);  /* push address */
    lua_pushnumber(L, myNumber);  /* push value */
    /* registry[&Key] = myNumber */
    lua_settable(L, LUA_REGISTRYINDEX);
    
    /* retrieve a number */
    lua_pushlightuserdata(L, (void *)&Key);  /* push address */
    lua_gettable(L, LUA_REGISTRYINDEX);  /* retrieve value */
    myNumber = lua_tonumber(L, -1);  /* convert to number */

We will discuss light userdata in more detail in Section 28.5. 

Of course, you can also use strings as keys into the registry, as long as you choose unique names. 
String keys are particularly useful when you want to allow other independent libraries to access 
your data, because all they need to know is the key name. For such keys, there is no bulletproof 
method of choosing names, but there are some good practices, such as avoiding common names and 
prefixing your names with the library name or something like it. Prefixes like lua or lualib are 
not good choices. Another option is to use a universal unique identifier (uuid), as most systems 
now have programs to generate such identifiers (e.g., uuidgen in Linux). An uuid is a 128-bit 
number (written in hexadecimal to form a string) that is generated by a combination of the host IP 
address, a time stamp, and a random component, so that it is assuredly different from any other 
uuid. 



27.3.2 - References
You should never use numbers as keys in the registry, because such keys are reserved for the 
reference system. This system is composed by a couple of functions in the auxiliary library that 
allow you to store values in the registry without worrying about how to create unique names. 
(Actually, those functions can act on any table, but they are typically used with the registry.) 

The call 
    int r = luaL_ref(L, LUA_REGISTRYINDEX);

pops a value from the stack, stores it into the registry with a fresh integer key, and returns that key. 
We call this key a reference. 

As the name implies, we use references mainly when we need to store a reference to a Lua value 
inside a C structure. As we have seen, we should never store pointers to Lua strings outside the C 
function that retrieved them. Moreover, Lua does not even offer pointers to other objects, such as 
tables or functions. So, we cannot refer to Lua objects through pointers. Instead, when we need such 
pointers, we create a reference and store it in C. 

To push the value associated with a reference r onto the stack, we simply write 
    lua_rawgeti(L, LUA_REGISTRYINDEX, r);

Finally, to release both the value and the reference, we call 
    luaL_unref(L, LUA_REGISTRYINDEX, r);

After this call, luaL_ref may return the value in r again as a new reference. 

The reference system treats nil as a special case. Whenever you call luaL_ref for a nil value, it 
does not create a new reference, but instead returns the constant reference LUA_REFNIL. The call 
    luaL_unref(L, LUA_REGISTRYINDEX, LUA_REFNIL);

has no effect, whereas 
    lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_REFNIL);

pushes a nil, as expected. 

The reference system also defines the constant LUA_NOREF, which is an integer different from any 
valid reference. It is useful to mark references as invalid. As with LUA_REFNIL, any attempt to 
retrieve LUA_NOREF returns nil and any attempt to release it has no effect. 

27.3.3 - Upvalues
While the registry implements global values, the upvalue mechanism implements an equivalent of C 
static variables, which are visible only inside a particular function. Every time you create a new C 
function in Lua, you can associate with it any number of upvalues; each upvalue can hold a single 
Lua value. Later, when the function is called, it has free access to any of its upvalues, using pseudo-
indices. 

We call this association of a C function with its upvalues a closure. Remember that, in Lua code, a 
closure is a function that uses local variables from an outer function. A C closure is a C 
approximation to a Lua closure. One interesting fact about closures is that you can create different 
closures using the same function code, but with different upvalues. 



To see a simple example, let us create a newCounter function in C. (We already defined this same 
function in Lua, in Section 6.1.) This function is a factory function: It returns a new counter 
function each time it is called. Although all counters share the same C code, each one keeps its own 
independent counter. The factory function is like this: 
    /* forward declaration */
    static int counter (lua_State *L);
    
    int newCounter (lua_State *L) {
      lua_pushnumber(L, 0);
      lua_pushcclosure(L, &counter, 1);
      return 1;
    }

The key function here is lua_pushcclosure, which creates a new closure. Its second argument 
is the base function (counter, in the example) and the third is the number of upvalues (1, in the 
example). Before creating a new closure, we must push on the stack the initial values for its 
upvalues. In our example, we push the number 0 as the initial value for the single upvalue. As 
expected, lua_pushcclosure leaves the new closure on the stack, so the closure is ready to be 
returned as the result of newCounter. 

Now, let us see the definition of counter: 
    static int counter (lua_State *L) {
      double val = lua_tonumber(L, lua_upvalueindex(1));
      lua_pushnumber(L, ++val);  /* new value */
      lua_pushvalue(L, -1);  /* duplicate it */
      lua_replace(L, lua_upvalueindex(1));  /* update upvalue */
      return 1;  /* return new value */
    }

Here, the key function is lua_upvalueindex (which is actually a macro), which produces the 
pseudo-index of an upvalue. Again, this pseudo-index is like any stack index, except that it does not 
live in the stack. The expression lua_upvalueindex(1) refers to the index of the first upvalue 
of the function. So, the lua_tonumber in function counter retrieves the current value of the 
first (and only) upvalue as a number. Then, function counter pushes the new value ++val, 
makes a copy of it, and uses one of the copies to replace the upvalue with the new value. Finally, it 
returns the other copy as its return value. 

Unlike Lua closures, C closures cannot share upvalues: Each closure has its own independent set. 
However, we can set the upvalues of different functions to refer to a common table, so that this table 
becomes a common place where those functions can share data. 

28 - User-Defined Types in C
In the previous chapter, we saw how to extend Lua with new functions written in C. Now, we will 
see how to extend Lua with new types written in C. We will start with a small example that we will 
extend through the chapter with metamethods and other goodies. 

Our example is a quite simple type: numeric arrays. The main motivation for this example is that it 
does not involve complex algorithms, so we can concentrate on API issues. Despite its simplicity, 
this type is useful for some applications. Usually, we do not need external arrays in Lua; hash tables 
do the job quite well. But hash tables can be memory-hungry for huge arrays, as for each entry they 
must store a generic value, a link address, plus some extra space to grow. A straight implementation 
in C, where we store the numeric values without any extra space, uses less than 50% of the memory 



used by a hash table. 

We will represent our arrays with the following structure: 
    typedef struct NumArray {
      int size;
      double values[1];  /* variable part */
    } NumArray;

We declare the array values with size 1 only as a placeholder, because C does not allow an array 
with size 0; we will define the actual size by the space we allocate for the array. For an array with n 
elements, we need sizeof(NumArray) + (n-1)*sizeof(double) bytes. (We subtract 
one from n because the original structure already includes space for one element.) 

28.1 - Userdata
Our first concern is how to represent array values in Lua. Lua provides a basic type specifically for 
this: userdata. A userdatum offers a raw memory area with no predefined operations in Lua. 

The Lua API offers the following function to create a userdatum: 
    void *lua_newuserdata (lua_State *L, size_t size);

The lua_newuserdata function allocates a block of memory with the given size, pushes the 
corresponding userdatum on the stack, and returns the block address. If for some reason you need to 
allocate memory by other means, it is very easy to create a userdatum with the size of a pointer and 
to store there a pointer to the real memory block. We will see examples of this technique in the next 
chapter. 

Using lua_newuserdata, the function that creates new arrays is as follows: 
    static int newarray (lua_State *L) {
      int n = luaL_checkint(L, 1);
      size_t nbytes = sizeof(NumArray) + (n - 1)*sizeof(double);
      NumArray *a = (NumArray *)lua_newuserdata(L, nbytes);
      a->size = n;
      return 1;  /* new userdatum is already on the stack */
    }

(The luaL_checkint function is a variant of luaL_checknumber for integers.) Once 
newarray is registered in Lua, you can create new arrays with a statement like a = 
array.new(1000). 

To store an entry, we will use a call like array.set(array, index, value). Later we will 
see how to use metatables to support the more conventional syntax array[index] = value. 
For both notations, the underlying function is the same. It assumes that indices start at 1, as is usual 
in Lua. 
    static int setarray (lua_State *L) {
      NumArray *a = (NumArray *)lua_touserdata(L, 1);
      int index = luaL_checkint(L, 2);
      double value = luaL_checknumber(L, 3);
    
      luaL_argcheck(L, a != NULL, 1, "`array' expected");
    
      luaL_argcheck(L, 1 <= index && index <= a->size, 2,
                       "index out of range");
    



      a->values[index-1] = value;
      return 0;
    }

The luaL_argcheck function checks a given condition, raising an error if necessary. So, if we 
call setarray with a bad argument, we get an elucidative error message: 
    array.set(a, 11, 0)
    --> stdin:1: bad argument #1 to `set' (`array' expected)

The next function retrieves an entry: 
    static int getarray (lua_State *L) {
      NumArray *a = (NumArray *)lua_touserdata(L, 1);
      int index = luaL_checkint(L, 2);
    
      luaL_argcheck(L, a != NULL, 1, "`array' expected");
    
      luaL_argcheck(L, 1 <= index && index <= a->size, 2,
                       "index out of range");
    
      lua_pushnumber(L, a->values[index-1]);
      return 1;
    }

We define another function to retrieve the size of an array: 
    static int getsize (lua_State *L) {
      NumArray *a = (NumArray *)lua_touserdata(L, 1);
      luaL_argcheck(L, a != NULL, 1, "`array' expected");
      lua_pushnumber(L, a->size);
      return 1;
    }

Finally, we need some extra code to initialize our library: 
    static const struct luaL_reg arraylib [] = {
      {"new", newarray},
      {"set", setarray},
      {"get", getarray},
      {"size", getsize},
      {NULL, NULL}
    };
    
    int luaopen_array (lua_State *L) {
      luaL_openlib(L, "array", arraylib, 0);
      return 1;
    }

Again, we use luaL_openlib, from the auxiliary library. It creates a table with the given name 
("array", in our example) and fills it with the pairs name-function specified by the array 
arraylib. 

After opening the library, we are ready to use our new type in Lua: 
    a = array.new(1000)
    print(a)               --> userdata: 0x8064d48
    print(array.size(a))   --> 1000
    for i=1,1000 do
      array.set(a, i, 1/i)
    end
    print(array.get(a, 10))  --> 0.1



Running this implementation on a Pentium/Linux, an array with 100K elements takes 800 KB of 
memory, as expected; an equivalent Lua table needs more than 1.5 MB. 

28.2 - Metatables
Our current implementation has a major security hole. Suppose the user writes something like 
array.set(io.stdin, 1, 0). The value in io.stdin is a userdatum with a pointer to a 
stream (FILE*). Because it is a userdatum, array.set will gladly accept it as a valid argument; 
the probable result will be a memory corruption (with luck you can get an index-out-of-range error 
instead). Such behavior is unacceptable for any Lua library. No matter how you use a C library, it 
should not corrupt C data or produce a core dump from Lua. 

To distinguish arrays from other userdata, we create a unique metatable for it. (Remember that 
userdata can also have metatables.) Then, every time we create an array, we mark it with this 
metatable; and every time we get an array, we check whether it has the right metatable. Because 
Lua code cannot change the metatable of a userdatum, it cannot fake our code. 

We also need a place to store this new metatable, so that we can access it to create new arrays and to 
check whether a given userdatum is an array. As we saw earlier, there are two common options for 
storing the metatable: in the registry, or as an upvalue for the functions in the library. It is 
customary, in Lua, to register any new C type into the registry, using a type name as the index and 
the metatable as the value. As with any other registry index, we must choose a type name with care, 
to avoid clashes. We will call this new type "LuaBook.array". 

As usual, the auxiliary library offers some functions to help us here. The new auxiliary functions we 
will use are 
    int   luaL_newmetatable (lua_State *L, const char *tname);
    void  luaL_getmetatable (lua_State *L, const char *tname);
    void *luaL_checkudata (lua_State *L, int index,
                                         const char *tname);

The luaL_newmetatable function creates a new table (to be used as a metatable), leaves the 
new table in the top of the stack, and associates the table and the given name in the registry. It does 
a dual association: It uses the name as a key to the table and the table as a key to the name. (This 
dual association allows faster implementations for the other two functions.) The 
luaL_getmetatable function retrieves the metatable associated with tname from the registry. 
Finally, luaL_checkudata checks whether the object at the given stack position is a userdatum 
with a metatable that matches the given name. It returns NULL if the object does not have the 
correct metatable (or if it is not a userdata); otherwise, it returns the userdata address. 

Now we can start our implementation. The first step it to change the function that opens the library. 
The new version must create a table to be used as the metatable for arrays: 
    int luaopen_array (lua_State *L) {
      luaL_newmetatable(L, "LuaBook.array");
      luaL_openlib(L, "array", arraylib, 0);
      return 1;
    }

The next step is to change newarray so that it sets this metatable in all arrays that it creates: 
    static int newarray (lua_State *L) {
      int n = luaL_checkint(L, 1);
      size_t nbytes = sizeof(NumArray) + (n - 1)*sizeof(double);
      NumArray *a = (NumArray *)lua_newuserdata(L, nbytes);



    
      luaL_getmetatable(L, "LuaBook.array");
      lua_setmetatable(L, -2);
    
      a->size = n;
      return 1;  /* new userdatum is already on the stack */
    }

The lua_setmetatable function pops a table from the stack and sets it as the metatable of the 
object at the given index. In our case, this object is the new userdatum. 

Finally, setarray, getarray, and getsize have to check whether they got a valid array as 
their first argument. Because we want to raise an error in case of wrong arguments, we define the 
following auxiliary function: 
    static NumArray *checkarray (lua_State *L) {
      void *ud = luaL_checkudata(L, 1, "LuaBook.array");
      luaL_argcheck(L, ud != NULL, 1, "`array' expected");
      return (NumArray *)ud;
    }

Using checkarray, the new definition for getsize is straightforward: 
    static int getsize (lua_State *L) {
      NumArray *a = checkarray(L);
      lua_pushnumber(L, a->size);
      return 1;
    }

Because setarray and getarray also share code to check the index as their second argument, 
we factor out their common parts in the following function: 
    static double *getelem (lua_State *L) {
      NumArray *a = checkarray(L);
      int index = luaL_checkint(L, 2);
    
      luaL_argcheck(L, 1 <= index && index <= a->size, 2,
                       "index out of range");
    
      /* return element address */
      return &a->values[index - 1];
    }

After the definition of getelem, setarray and getarray are straightforward: 
    static int setarray (lua_State *L) {
      double newvalue = luaL_checknumber(L, 3);
      *getelem(L) = newvalue;
      return 0;
    }
    
    static int getarray (lua_State *L) {
      lua_pushnumber(L, *getelem(L));
      return 1;
    }

Now, if you try something like array.get(io.stdin, 10), you will get a proper error 
message: 
    error: bad argument #1 to `getarray' (`array' expected)



28.3 - Object-Oriented Access
Our next step is to transform our new type into an object, so that we can operate on its instances 
using the usual object-oriented syntax, such as 
    a = array.new(1000)
    print(a:size())     --> 1000
    a:set(10, 3.4)
    print(a:get(10))    --> 3.4

Remember that a:size() is equivalent to a.size(a). Therefore, we have to arrange for the 
expression a.size to return our getsize function. The key mechanism here is the __index 
metamethod. For tables, this metamethod is called whenever Lua cannot find a value for a given 
key. For userdata, it is called in every access, because userdata have no keys at all. 

Assume that we run the following code: 
    local metaarray = getmetatable(array.new(1))
    metaarray.__index = metaarray
    metaarray.set = array.set
    metaarray.get = array.get
    metaarray.size = array.size

In the first line, we create an array only to get its metatable, which we assign to metaarray. (We 
cannot set the metatable of a userdata from Lua, but we can get its metatable without restrictions.) 
Then we set metaarray.__index to metaarray. When we evaluate a.size, Lua cannot 
find the key "size" in object a, because the object is a userdatum. Therefore, Lua will try to get 
this value from the field __index of the metatable of a, which happens to be metaarray itself. 
But metaarray.size is array.size, so a.size(a) results in array.size(a), as we 
wanted. 

Of course, we can write the same thing in C. We can do even better: Now that arrays are objects, 
with their own operations, we do not need to have those operations in the table array anymore. 
The only function that our library still has to export is new, to create new arrays. All other 
operations come only as methods. The C code can register them directly as such. 

The operations getsize, getarray, and setarray do not change from our previous 
approach. What will change is how we register them. That is, we have to change the function that 
opens the library. First, we need two separate function lists, one for regular functions and one for 
methods: 
    static const struct luaL_reg arraylib_f [] = {
      {"new", newarray},
      {NULL, NULL}
    };
    
    static const struct luaL_reg arraylib_m [] = {
      {"set", setarray},
      {"get", getarray},
      {"size", getsize},
      {NULL, NULL}
    };

The new version of luaopen_array, the function that opens the library, has to create the 
metatable, to assign it to its own __index field, to register all methods there, and to create and fill 
the array table: 
    int luaopen_array (lua_State *L) {
      luaL_newmetatable(L, "LuaBook.array");



    
      lua_pushstring(L, "__index");
      lua_pushvalue(L, -2);  /* pushes the metatable */
      lua_settable(L, -3);  /* metatable.__index = metatable */
    
      luaL_openlib(L, NULL, arraylib_m, 0);
    
      luaL_openlib(L, "array", arraylib_f, 0);
      return 1;
    }

Here we use another feature from luaL_openlib. In the first call, when we pass NULL as the 
library name, luaL_openlib does not create any table to pack the functions; instead, it assumes 
that the package table is on the stack, below any occasional upvalues. In this example, the package 
table is the metatable itself, which is where luaL_openlib will put the methods. The next call to 
luaL_openlib works regularly: It creates a new table with the given name (array) and 
registers the given functions there (only new, in this case). 

As a final touch, we will add a __tostring method to our new type, so that print(a) prints 
array plus the size of the array inside parentheses (for instance, array(1000)). The function 
itself is here: 
    int array2string (lua_State *L) {
      NumArray *a = checkarray(L);
      lua_pushfstring(L, "array(%d)", a->size);
      return 1;
    }

The lua_pushfstring function formats the string and leaves it on the stack top. We also have 
to add array2string to the list arraylib_m, to include it in the metatable of array objects: 
    static const struct luaL_reg arraylib_m [] = {
      {"__tostring", array2string},
      {"set", setarray},
      ...
    };

28.4 - Array Access
An alternative to the object-oriented notation is to use a regular array notation to access our arrays. 
Instead of writing a:get(i), we could simply write a[i]. For our example, this is easy to do, 
because our functions setarray and getarray already receive their arguments in the order that 
they are given to the respective metamethods. A quick solution is to define those metamethods right 
into our Lua code: 
    local metaarray = getmetatable(newarray(1))
    metaarray.__index = array.get
    metaarray.__newindex = array.set

(We must run that code on the original implementation for arrays, without the modifications for 
object-oriented access.) That is all we need to use the usual syntax: 
    a = array.new(1000)
    a[10] = 3.4         -- setarray
    print(a[10])        -- getarray   --> 3.4

If we prefer, we can register those metamethods in our C code. For that, we change again our 



initialization function: 
    int luaopen_array (lua_State *L) {
      luaL_newmetatable(L, "LuaBook.array");
      luaL_openlib(L, "array", arraylib, 0);
    
      /* now the stack has the metatable at index 1 and
         `array' at index 2 */
      lua_pushstring(L, "__index");
      lua_pushstring(L, "get");
      lua_gettable(L, 2);  /* get array.get */
      lua_settable(L, 1);  /* metatable.__index = array.get */
    
      lua_pushstring(L, "__newindex");
      lua_pushstring(L, "set");
      lua_gettable(L, 2); /* get array.set */
      lua_settable(L, 1); /* metatable.__newindex = array.set */
    
      return 0;
    }

28.5 - Light Userdata
The userdata that we have been using until now is called full userdata. Lua offers another kind of 
userdata, called light userdata. 

A light userdatum is a value that represents a C pointer (that is, a void * value). Because it is a 
value, we do not create them (in the same way that we do not create numbers). To put a light 
userdatum into the stack, we use lua_pushlightuserdata: 
    void lua_pushlightuserdata (lua_State *L, void *p);

Despite their common name, light userdata are quite different from full userdata. Light userdata are 
not buffers, but single pointers. They have no metatables. Like numbers, light userdata do not need 
to be managed by the garbage collector (and are not). 

Some people use light userdata as a cheap alternative to full userdata. This is not a typical use, 
however. First, with light userdata you have to manage memory by yourself, because they are not 
subject to garbage collection. Second, despite the name, full userdata are inexpensive, too. They add 
little overhead compared to a malloc for the given memory size. 

The real use of light userdata comes from equality. As a full userdata is an object, it is only equal to 
itself. A light userdata, on the other hand, represents a C pointer value. As such, it is equal to any 
userdata that represents the same pointer. Therefore, we can use light userdata to find C objects 
inside Lua. 

As a typical example, suppose we are implementing a binding between Lua and a Window system. 
In this binding, we use full userdata to represent windows. (Each userdatum may contain the whole 
window structure or only a pointer to a window created by the system.) When there is an event 
inside a window (e.g., a mouse click), the system calls a specific callback, identifying the window 
by its address. To pass the callback to Lua, we must find the userdata that represents the given 
window. To find this userdata, we can keep a table where the indices are light userdata with the 
window addresses and the values are the full userdata that represent the windows in Lua. Once we 
have a window address, we push it into the API stack as a light userdata and use the userdata as an 
index into that table. (Note that the table should have weak values. Otherwise, those full userdata 
would never be collected.) 



29 - Managing Resources
In our implementation of arrays in the previous chapter, we did not need to worry about managing 
resources. They need only memory. Each userdatum representing an array has its own memory, 
which is managed by Lua. When an array becomes garbage (that is, inaccessible by the program), 
Lua eventually collects it and frees its memory. 

Life is not always that easy. Sometimes, an object needs other resources besides raw memory, such 
as file descriptors, window handles, and the like. (Often these resources are just memory too, but 
managed by some other part of the system). In such cases, when the object becomes garbage and is 
collected, somehow those other resources must be released too. Several OO languages provide a 
specific mechanism (called finalizer or destructor) for that need. Lua provides finalizers in the form 
of the __gc metamethod. This metamethod only works for userdata values. When a userdatum is 
about to be collected and its metatable has a __gc field, Lua calls the value of this field (which 
should be a function), passing as an argument the userdatum itself. This function can then release 
any resource associated with that userdatum. 

To illustrate the use of this metamethod and of the API as a whole, in this chapter we will develop 
two bindings from Lua to external facilities. The first example is another implementation for a 
function to traverse a directory. The second (and more substantial) example is a binding to Expat, an 
open source XML parser. 

29.1 - A Directory Iterator
Previously, we implemented a dir function that returned a table with all files from a given 
directory. Our new implementation will return an iterator that returns a new entry each time it is 
called. With this new implementation, we will be able to traverse a directory with a loop like this 
one: 
    for fname in dir(".") do  print(fname)  end

To iterate over a directory, in C, we need a DIR structure. Instances of DIR are created by 
opendir and must be explicitly released by a call to closedir. Our previous implementation of 
dir kept its DIR instance as a local variable and closed that instance after retrieving the last file 
name. Our new implementation cannot keep this DIR instance in a local variable, because it must 
query this value over several calls. Moreover, it cannot close the directory only after retrieving the 
last name; if the program breaks the loop, the iterator will never retrieve this last name. Therefore, 
to make sure that the DIR instance is always released, we store its address in a userdatum and use 
the __gc metamethod of this userdatum to release the directory structure. 

Despite its central role in our implementation, this userdatum representing a directory does not need 
to be visible from Lua. The dir function returns an iterator function; this is what Lua sees. The 
directory may be an upvalue of the iterator function. As such, the iterator function has direct access 
to this structure, but Lua code has not (and does not need to). 

In all, we need three C functions. First, we need the dir function, a factory that Lua calls to create 
iterators; it must open a DIR structure and put it as an upvalue of the iterator function. Second, we 
need the iterator function. Third, we need the __gc metamethod, which closes a DIR structure. As 
usual, we also need an extra function to make initial arrangements, such as to create a metatable for 
directories and to initialize this metatable. 



Let us start our code with the dir function: 
    #include <dirent.h>
    #include <errno.h>
    
    /* forward declaration for the iterator function */
    static int dir_iter (lua_State *L);
    
    static int l_dir (lua_State *L) {
      const char *path = luaL_checkstring(L, 1);
    
      /* create a userdatum to store a DIR address */
      DIR **d = (DIR **)lua_newuserdata(L, sizeof(DIR *));
    
      /* set its metatable */
      luaL_getmetatable(L, "LuaBook.dir");
      lua_setmetatable(L, -2);
    
      /* try to open the given directory */
      *d = opendir(path);
      if (*d == NULL)  /* error opening the directory? */
        luaL_error(L, "cannot open %s: %s", path,
                                            strerror(errno));
    
      /* creates and returns the iterator function
         (its sole upvalue, the directory userdatum,
         is already on the stack top */
      lua_pushcclosure(L, dir_iter, 1);
      return 1;
    }

A subtle point here is that we must create the userdatum before opening the directory. If we first 
open the directory, and then the call to lua_newuserdata raises an error, we lose the DIR 
structure. With the correct order, the DIR structure, once created, is immediately associated with the 
userdatum; whatever happens after that, the __gc metamethod will eventually release the structure. 

The next function is the iterator itself: 
    static int dir_iter (lua_State *L) {
      DIR *d = *(DIR **)lua_touserdata(L, lua_upvalueindex(1));
      struct dirent *entry;
      if ((entry = readdir(d)) != NULL) {
        lua_pushstring(L, entry->d_name);
        return 1;
      }
      else return 0;  /* no more values to return */
    }

The __gc metamethod closes a directory, but it must take one precaution: Because we create the 
userdatum before opening the directory, this userdatum will be collected whatever the result of 
opendir. If opendir fails, there will be nothing to close. 
    static int dir_gc (lua_State *L) {
      DIR *d = *(DIR **)lua_touserdata(L, 1);
      if (d) closedir(d);
      return 0;
    }

Finally, there is the function that opens this one-function library: 
    int luaopen_dir (lua_State *L) {
      luaL_newmetatable(L, "LuaBook.dir");
    



      /* set its __gc field */
      lua_pushstring(L, "__gc");
      lua_pushcfunction(L, dir_gc);
      lua_settable(L, -3);
    
      /* register the `dir' function */
      lua_pushcfunction(L, l_dir);
      lua_setglobal(L, "dir");
    
      return 0;
    }

This whole example has an interesting subtlety. At first, it may seem that dir_gc should check 
whether its argument is a directory. Otherwise, a malicious user could call it with another kind of 
userdata (a file, for instance), with disastrous consequences. However, there is no way for a Lua 
program to access this function: It is stored only in the metatable of directories and Lua programs 
never access those directories. 

29.2 - An XML Parser
Now we will look at a simplified implementation of lxp, a binding between Lua and Expat. Expat 
is an open source XML 1.0 parser written in C. It implements SAX, the Simple API for XML. SAX 
is an event-based API. That means that a SAX parser reads an XML document and, as it goes, 
reports to the application what it finds, through callbacks. For instance, if we instruct Expat to parse 
a string like 
    <tag cap="5">hi</tag>

it will generate three events: a start-element event, when it reads the substring "<tag 
cap="5">"; a text event (also called a character data event), when it reads "hi"; and an end-
element event, when it reads "</tag>". Each of these events calls an appropriate callback 
handler in the application. 

Here we will not cover the entire Expat library. We will concentrate only on those parts that 
illustrate new techniques for interacting with Lua. It is easy to add bells and whistles later, after we 
have implemented this core functionality. Although Expat handles more than a dozen different 
events, we will consider only the three events that we saw in the previous example (start elements, 
end elements, and text). The part of the Expat API that we need for this example is small. First, we 
need functions to create and destroy an Expat parser: 
    #include <xmlparse.h>
    
    XML_Parser XML_ParserCreate (const char *encoding);
    void XML_ParserFree (XML_Parser p);

The argument encoding is optional; we will use NULL in our binding. 

After we have a parser, we must register its callback handlers: 
    XML_SetElementHandler(XML_Parser p,
                          XML_StartElementHandler start,
                          XML_EndElementHandler end);
    
    XML_SetCharacterDataHandler(XML_Parser p,
                                XML_CharacterDataHandler hndl);

The first function registers handlers for start and end elements. The second function registers 



handlers for text (character data, in XML parlance). 

All callback handlers receive some user data as their first parameter. The start-element handler 
receives also the tag name and its attributes: 
    typedef void (*XML_StartElementHandler)(void *uData,
                                            const char *name,
                                            const char **atts);

The attributes come as a NULL-terminated array of strings, where each pair of consecutive strings 
holds an attribute name and its value. The end-element handler has only one extra parameter, the tag 
name: 
    typedef void (*XML_EndElementHandler)(void *uData,
                                          const char *name);

Finally, a text handler receives only the text as an extra parameter. This text string is not null-
terminated; instead, it has an explicit length: 
    typedef void
    (*XML_CharacterDataHandler)(void *uData,
                                const char *s,
                                int len);

To feed text to Expat, we use the following function: 
    int XML_Parse (XML_Parser p,
                   const char *s, int len, int isFinal);

Expat receives the document to be parsed in pieces, through successive calls to XML_Parse. The 
last argument to XML_Parse, isFinal, informs Expat whether that piece is the last one of a 
document. Notice that each piece of text does not need to be zero terminated; instead, we supply an 
explicit length. The XML_Parse function returns zero if it detects a parse error. (Expat provides 
auxiliary functions to retrieve error information, but we will ignore them here, for the sake of 
simplicity.) 

The last function we need from Expat allows us to set the user data that will be passed to the 
handlers: 
    void XML_SetUserData (XML_Parser p, void *uData);

Now let us have a look at how we can use this library in Lua. A first approach is a direct approach: 
Simply export all those functions to Lua. A better approach is to adapt the functionality to Lua. For 
instance, because Lua is untyped, we do not need different functions to set each kind of callback. 
Better yet, we can avoid the callback registering functions altogether. Instead, when we create a 
parser, we give a callback table that contains all callback handlers, each with an appropriate key. 
For instance, if we only want to print a layout of a document, we could use the following callback 
table: 
    local count = 0
    
    callbacks = {
      StartElement = function (parser, tagname)
        io.write("+ ", string.rep("  ", count), tagname, "\n")
        count = count + 1
      end,
    
      EndElement = function (parser, tagname)
        count = count - 1
        io.write("- ", string.rep("  ", count), tagname, "\n")
      end,



    }

Fed with the input "<to> <yes/> </to>", those handlers would print 
    + to
    +   yes
    -   yes
    - to

With this API, we do not need functions to manipulate callbacks. We manipulate them directly in 
the callback table. Thus, the whole API needs only three functions: one to create parsers, one to 
parse a piece of text, and one to close a parser. (Actually, we will implement the last two functions 
as methods of parser objects.) A typical use of the API could be like this: 
    p = lxp.new(callbacks)     -- create new parser
    for l in io.lines() do     -- iterate over input lines
      assert(p:parse(l))               -- parse the line
      assert(p:parse("\n"))            -- add a newline
    end
    assert(p:parse())        -- finish document
    p:close()

Now let us turn our attention to the implementation. The first decision is how to represent a parser 
in Lua. It is quite natural to use a userdatum, but what do we need to put inside it? At least, we must 
keep the actual Expat parser and the callback table. We cannot store a Lua table inside a userdatum 
(or inside any C structure); however, we can create a reference to the table and store the reference 
inside the userdatum. (Remember from Section 27.3.2 that a reference is a Lua-generated integer 
key in the registry.) Finally, we must be able to store a Lua state into a parser object, because these 
parser objects is all that an Expat callback receives from our program, and the callbacks need to call 
Lua. Therefore, the definition for a parser object is as follows: 
    #include <xmlparse.h>
    
    typedef struct lxp_userdata {
      lua_State *L;
      XML_Parser *parser;          /* associated expat parser */
      int tableref;   /* table with callbacks for this parser */
    } lxp_userdata;

The next step is the function that creates parser objects. Here it is: 
    static int lxp_make_parser (lua_State *L) {
      XML_Parser p;
      lxp_userdata *xpu;
    
      /* (1) create a parser object */
      xpu = (lxp_userdata *)lua_newuserdata(L,
                                       sizeof(lxp_userdata));
    
      /* pre-initialize it, in case of errors */
      xpu->tableref = LUA_REFNIL;
      xpu->parser = NULL;
    
      /* set its metatable */
      luaL_getmetatable(L, "Expat");
      lua_setmetatable(L, -2);
    
      /* (2) create the Expat parser */
      p = xpu->parser = XML_ParserCreate(NULL);
      if (!p)
        luaL_error(L, "XML_ParserCreate failed");



    
      /* (3) create and store reference to callback table */
      luaL_checktype(L, 1, LUA_TTABLE);
      lua_pushvalue(L, 1);  /* put table on the stack top */
      xpu->tableref = luaL_ref(L, LUA_REGISTRYINDEX);
    
      /* (4) configure Expat parser */
      XML_SetUserData(p, xpu);
      XML_SetElementHandler(p, f_StartElement, f_EndElement);
      XML_SetCharacterDataHandler(p, f_CharData);
      return 1;
    }

The lxp_make_parser function has four main steps: 

• Its first step follows a common pattern: It first creates a userdatum; then it pre-initializes the 
userdatum with consistent values; and finally sets its metatable. The reason for the pre-
initialization is subtle: If there is any error during the initialization, we must make sure that 
the finalizer (the __gc metamethod) will find the userdata in a consistent state. 

• In step 2, the function creates an Expat parser, stores it in the userdatum, and checks for 
errors. 

• Step 3 ensures that the first argument to the function is actually a table (the callback table), 
creates a reference to it, and stores the reference into the new userdatum. 

• The last step initializes the Expat parser. It sets the userdatum as the object to be passed to 
callback functions and it sets the callback functions. Notice that these callback functions are 
the same for all parsers; after all, it is impossible to dynamically create new functions in C. 
Instead, these fixed C functions will use the callback table to decide which Lua functions 
they should call each time. 

The next step is the parse method, which parses a piece of XML data. It gets two arguments: The 
parser object (the self of the method) and an optional piece of XML data. When called without any 
data, it informs Expat that the document has no more parts: 
    static int lxp_parse (lua_State *L) {
      int status;
      size_t len;
      const char *s;
      lxp_userdata *xpu;
    
      /* get and check first argument (should be a parser) */
      xpu = (lxp_userdata *)luaL_checkudata(L, 1, "Expat");
      luaL_argcheck(L, xpu, 1, "expat parser expected");
    
      /* get second argument (a string) */
      s = luaL_optlstring(L, 2, NULL, &len);
    
      /* prepare environment for handlers: */
      /* put callback table at stack index 3 */
      lua_settop(L, 2);
      lua_getref(L, xpu->tableref);
      xpu->L = L;  /* set Lua state */
    
      /* call Expat to parse string */
      status = XML_Parse(xpu->parser, s, (int)len, s == NULL);
    
      /* return error code */
      lua_pushboolean(L, status);
      return 1;
    }



When lxp_parse calls XML_Parse, the latter function will call the handlers for each relevant 
element that it finds in the given piece of document. Therefore, lxp_parse first prepares an 
environment for these handlers. There is one more detail in the call to XML_Parse: Remember that 
the last argument to this function tells Expat whether the given piece of text is the last one. When 
we call parse without an argument s will be NULL, so this last argument will be true. 

Now let us turn our attention to the callback functions f_StartElement, f_EndElement, and 
f_CharData. All those three functions have a similar structure: Each checks whether the callback 
table defines a Lua handler for its specific event and, if so, prepares the arguments and then calls 
that Lua handler. 

Let us first see the f_CharData handler. Its code is quite simple. It calls its corresponding handler 
in Lua (when present) with only two arguments: the parser and the character data (a string): 
    static void f_CharData (void *ud, const char *s, int len) {
      lxp_userdata *xpu = (lxp_userdata *)ud;
      lua_State *L = xpu->L;
    
      /* get handler */
      lua_pushstring(L, "CharacterData");
      lua_gettable(L, 3);
      if (lua_isnil(L, -1)) {  /* no handler? */
        lua_pop(L, 1);
        return;
      }
    
      lua_pushvalue(L, 1);  /* push the parser (`self') */
      lua_pushlstring(L, s, len);  /* push Char data */
      lua_call(L, 2, 0);  /* call the handler */
    }

Notice that all these C handlers receive a lxp_userdata structure as their first argument, due to 
our call to XML_SetUserData when we create the parser. Also notice how it uses the 
environment set by lxp_parse. First, it assumes that the callback table is at stack index 3. 
Second, it assumes that the parser itself is at stack index 1 (it must be there, because it should be the 
first argument to lxp_parse). 

The f_EndElement handler is also simple and quite similar to f_CharData. It also calls its 
corresponding Lua handler with two arguments: the parser and the tag name (again a string, but 
now null-terminated): 
    static void f_EndElement (void *ud, const char *name) {
      lxp_userdata *xpu = (lxp_userdata *)ud;
      lua_State *L = xpu->L;
    
      lua_pushstring(L, "EndElement");
      lua_gettable(L, 3);
      if (lua_isnil(L, -1)) {  /* no handler? */
        lua_pop(L, 1);
        return;
      }
    
      lua_pushvalue(L, 1);  /* push the parser (`self') */
      lua_pushstring(L, name);  /* push tag name */
      lua_call(L, 2, 0);  /* call the handler */
    }

The last handler, f_StartElement, calls Lua with three arguments: the parser, the tag name, and 
a list of attributes. This handler is a little more complex than the others, because it needs to translate 
the tag's list of attributes into Lua. We will use a quite natural translation. For instance, a start tag 



like 
    <to method="post" priority="high">

generates the following table of attributes: 
    { method = "post", priority = "high" }

The implementation of f_StartElement follows: 
    static void f_StartElement (void *ud,
                                const char *name,
                                const char **atts) {
      lxp_userdata *xpu = (lxp_userdata *)ud;
      lua_State *L = xpu->L;
    
      lua_pushstring(L, "StartElement");
      lua_gettable(L, 3);
      if (lua_isnil(L, -1)) {  /* no handler? */
        lua_pop(L, 1);
        return;
      }
    
      lua_pushvalue(L, 1);  /* push the parser (`self') */
      lua_pushstring(L, name);  /* push tag name */
    
      /* create and fill the attribute table */
      lua_newtable(L);
      while (*atts) {
        lua_pushstring(L, *atts++);
        lua_pushstring(L, *atts++);
        lua_settable(L, -3);
      }
    
      lua_call(L, 3, 0);  /* call the handler */
    }

The last method for parsers is close. When we close a parser, we have to free all its resources, 
namely the Expat structure and the callback table. Remember that, due to occasional errors during 
its creation, a parser may not have these resources: 
    static int lxp_close (lua_State *L) {
      lxp_userdata *xpu;
    
      xpu = (lxp_userdata *)luaL_checkudata(L, 1, "Expat");
      luaL_argcheck(L, xpu, 1, "expat parser expected");
    
      /* free (unref) callback table */
      luaL_unref(L, LUA_REGISTRYINDEX, xpu->tableref);
      xpu->tableref = LUA_REFNIL;
    
      /* free Expat parser (if there is one) */
      if (xpu->parser)
        XML_ParserFree(xpu->parser);
      xpu->parser = NULL;
      return 0;
    }

Notice how we keep the parser in a consistent state as we close it, so there is no problem if we try to 
close it again or when the garbage collector finalizes it. Actually, we will use exactly this function 
as the finalizer. That ensures that every parser eventually frees its resources, even if the programmer 
does not close it. 



The final step is to open the library, putting all those parts together. We will use here the same 
scheme that we used in the object-oriented array example (Section 28.3): We will create a 
metatable, put all methods inside it, and make its __index field point to itself. For that, we need a 
list with the parser methods: 
    static const struct luaL_reg lxp_meths[] = {
      {"parse", lxp_parse},
      {"close", lxp_close},
      {"__gc", lxp_close},
      {NULL, NULL}
    };

We also need a list with the functions of this library. As is common with OO libraries, this library 
has a single function, which creates new parsers: 
    static const struct luaL_reg lxp_funcs[] = {
      {"new", lxp_make_parser},
      {NULL, NULL}
    };

Finally, the open function must create the metatable, make it point to itself (through __index), 
and register methods and functions: 
    int luaopen_lxp (lua_State *L) {
      /* create metatable */
      luaL_newmetatable(L, "Expat");
    
      /* metatable.__index = metatable */
      lua_pushliteral(L, "__index");
      lua_pushvalue(L, -2);
      lua_rawset(L, -3);
    
      /* register methods */
      luaL_openlib (L, NULL, lxp_meths, 0);
    
      /* register functions (only lxp.new) */
      luaL_openlib (L, "lxp", lxp_funcs, 0);
      return 1;
    }
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